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Abstract

These are the notes of a course I taught on Fall 2013 at Harvard University. Any
comments and suggestions are welcome. I plan on improving these notes next time I
teach the course. The notes may have mistakes, so use them at your own risk. Also,
many citations are missing. The following references were important sources for these
notes:

e Figenvalues in Riemannian geometry. By 1. Chavel.

e Old and new aspects in Spectral Geometry. By M. Craiveanu, M. Puta and T. Ras-
sias.

e The Laplacian on a Riemannian manifold. By S. Rosenberg.
e Local and global analysis of eigenfunctions on Riemannian manifolds. By S. Zelditch.

I would like to thank Evans Harrell and Richard Laugesen for sharing with me their
thoughts and experiences on teaching courses like this one.

Enjoy!!
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CHAPTER 1

What makes the Laplacian special?

In this Chapter we motivate the study of the Laplace operator. To simplify exposition,
we do this by concentrating on planar domains.

1.1 Almost daily life problems

Let © C R™ be a connected domain and consider the operator A acting on C*°(2) that
simply differentiates a function ¢ € C*°(Q2) two times with respect to each position
variable: -
Ap = — g(g
i—1 9

This operator is called the Laplacian on 2. You might also have seen it defined as
A = —divV. This is actually the definition of the Laplacian on a Riemannian manifold
(M, g). Then the Riemannian Laplacian is defined as

Ay = —divyV,

where div, is the divergence operator and V is the gradient one. Here are some exam-
ples where the Laplacian plays a key role:

Steady-state Fluid Flow. Suppose you want to study the velocity v(z1, z2,x3,t) of
a given fluid. If the flow is steady, then the velocity field should be independent of the
time t. If the flow is irrotational, curlv = 0, then v = —Vu for some function u known
as the velocity potential. If the flow is incompressible, then dive = 0. It then follows
that v must satisfy the equation

Au = 0.

A function that satisfies such equation is called a harmonic function. Thus the velocity
potential for an incompressible irrotational fluid is harmonic.
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Static electric field. A static electric field F is governed by the following equations
curlE = 0 and divE = 47p where p denotes the charge density. Since curlE = 0 it fol-
lows that F = —Vu for some function known as the electric potential. You then must
have Au = 0. In other words, the electric potential in a charge free region is harmonic.

Heat diffusion. If you are interested in understanding how would heat propagate
along €2 C R™ then you should solve the Heat Fquation

10
Au(x,t) = ———u(x,t
(,1) =~ ol 1)
where c¢ is the conductivity of the material of which 2 is made of, and u(z,t) is the
temperature at the point z € € at time ¢.

You could also think you have an insulated region € (it could be a wire, a ball, etc.)
and apply certain given temperatures on the edge 9). If you want to know what
the temperature will be after a long enough period of time (that is, the steady state
temperature distribution), then you need to find a solution of the heat equation that
be independent of time. The steady state temperature solution will be a function
u(zy,...,Tn,t) such that

Au = 0.

Wave propagation. Now, instead of applying heat to the surface suppose you cover
it with a thin layer of some fluid and you wish to describe the motion of the surface of
the fluid. Then you will need to solve the Wave equation

82
~coml
where +/c is the speed of sound in your fluid, and u(z,t) denotes the height of the wave
above the point x at time ¢.

Au(z,t) = x,t)

You could also think of your domain € as the membrane of a drum, in which case
its boundary 92 would be attached to the rim of the drum. Suppose you want to
study what will happen with the vibration you would generate if you hit it. Then, you
should also solve the wave equation Au(z,t) = —g—;tu(x, t) for your drum, but this time
you want to make sure that you take into account that the border of the membrane is
fixed. Thus, you should also ask your solution to satisfy u(z,t) = 0 for all points = € 9€2.

Quantum particles. If you are a bit more eccentric and wish to see how a quantum
particle moves inside 2 (under the assumption that there are no external forces) then
you need to solve the Schridinger Equation

2
h—Au(m, t) = ihgtu(x,t)

2m
where A is Planck’s constant and m is the mass of the free particle. Normalizing u
so that [[u(-,)[|r2(@) = 1 one interprets u(z,t) as a probability density. That is, if
A C Q) then the probability that your quantum particle be inside A at time ¢ is given
by fA |u(a:,t)]2dx.
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1.2 Why not another operator?

The Laplacian on R"™ commutes with translations and rotations. That is, if T is a
translation or rotation then A(p oT) = (Ayp) o T. Something more striking occurs,
if S is any operator that commutes with translations and rotations then there exist
coefficients aq, . .., a,;; making S = Z;n:l a; AJ. Therefore, it is not surprising that the
Laplacian will be a main star in any process whose underlying physics are independent
of position and direction such as heat diffusion and wave propagation in R"™. We will
show that on general Riemannian manifolds the Laplacian commutes with isometries.

1.3 You need to solve Ap = Ay !

There are of course many more problems involving the Laplacian, but we will focus on
these ones to stress the importance of solving the eigenvalue problem (also known as
Helmholtz equation)

Ap = Ap.

It is clear that if one wants to study harmonic functions then one needs to solve the
equation
Ap = Ap with A =0.

So the need for understanding solutions of the Helmholtz equation for problems such
as the static electric field or the steady-state fluid flow is straightforward. In order to
attack the heat diffusion, wave propagation and Schrédinger problems described above,
a standard method (inspired by Stone-Weierstrass Theorem) is to look for solutions
u(z,t) of the form u(z,t) = a(t)p(z). For instance if you do this and look at the Heat
equation then you must have

Lole) ol reQ, t>0.

p() a(t)
This shows that there must exist a A € R such that

o = -Xa and Ap = \o.

Therefore ¢ must be an eigenfunction of the Laplacian with eigenvalue A and «(t) =
e~*. Once you have these particular solutions uj = e "’y you use the superposition
principle to write a general solution

u(w,t) = age Mopy()
K

where the coefficients aj are chosen depending on the initial conditions. You could do
the same with the wave equation (we do it in detail for a guitar string in Section 2.1)
or with the Schrodingier equation and you will also find particular solutions of the form
ug(z,t) = ag(t)pr(z) with

e Mt Heat eqn,
A = M0k and  og(t) = { etV Wave eqn,
et Schrodinger eqn.
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1.4 A hard problem: understanding the eigenvalues

Section 1.3 shows why it is so important to understand the eigenvalues Ay together
with the eigenfunctions ¢y, of the Laplacian. The truth is that doing so is a very hard
task. Indeed one can only explicitly compute the eigenvalues for very specific choices of
regions 2 such as rectangles, discs, ellipses and a few types of triangles (see Section ?7?).
Understanding the eigenvalues is so hard that for hexagons not even the first eigenvalues
is known! This brings us to the following question:

Question 1 (Direct problem). If T know (more or less) the shape of a domain, what
can I deduce of its Laplace eigenvalues?

On the other side of the road, it wouldn’t be weird to expect the eigenvalues of the
Laplacian on €2 to carry some information of the geometry of (2.

Question 2 (Inverse problem). If I know (more or less) the Laplace eigenvalues of a
domain, what can I deduce of its geometry?

1.4.1 Direct problems
The first eigenvalue: Rayleigh Conjecture

The first eigenvalue A; of the Laplacian on an interval or a region of the plane is called
the fundamental tone. This is because either on a vibrating guitar string or drum mem-
brane the first eigenvalue corresponds to the leading frequency of oscillation and it is
therefore the leading tone you hear when you play one of these instruments. Seen from
a heat-diffusion point of view, since the solutions of the heat equation are of the form
u(z,y,t) =3, ane *to,(z,y), it is clear that (A1, 1) give the dominant information
because e i (, y) is the mode that decays with slowest rate as time passes by. From
this last point of view it is natural to expect that the geometry of 2 should be reflected
on A1 to some extent. For instance the largest the boundary 02 is, the more quickly
the heat should wear off. That is, if we consider a domain €2 and a ball B of same area
as €2, then we expect the heat on Q to diffuse more quickly than that of B. Therefore,
we should have

Faber-Krahn Inequality:
A1(Q) > \(B).

This result was proved by Faber and Krahn in 1923. As expected, it extends to any
dimension.

Counting function: Lorentz conjecture

Jeans asked once what is the energy corresponding to an infinitesimal frequency interval.
In 1966 Mark Kac told this story in a very illustrating manner:

...At the end of October of 1910 the great Dutch physicist H. A. Lorentz
was invited to Gotingen to deliver a Wolfskehl lecture... Lorentz gave five
lectures under the overall title “Old and new problems of physics” and at
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the end of the fourth lecture he spoke as follows (in free translation from
the original German):

In conclusion, there is a mathematical problem which perhaps will arouse the
interest of mathematicians who are present. It originates in the radiation
theory of Jeans.

In an enclosure with a perfectly reflecting surface, there can form stand-
ing electromagnetic waves analogous to tones over an organ pipe: we shall
confine our attention to very high overtones. Jeans asks for the energy in
the frequency interval dv. To this end, he calculates the number of overtones
which lie between frequencies v and v+dv, and multiplies this number by the
energy which belongs to the frequency v, and which according to a theorem
of statistical mechanics, is the same for all frequencies.

It is here that there arises the mathematical problem to prove that the number
of sufficiently high overtones which lie between v and v + dv is independent
of the shape of the enclosure, and is simply proportional to its volume. For
many shapes for which calculations can be carried out, this theorem has been
verified in a Leiden dissertation. There is no doubt that it holds in general
even for multiply connected regions. Similar theorems for other vibrating
structures, like membranes, air masses, etc., should also hold.

If we express the Lorentz conjecture in a vibrating membrane €2, it becomes of the
following form: Let A1 < Ao < ... be the Laplace eigenvalues corresponding to the
problem

Apr = M@k ko = 0.

Then
area(€)

A as A — oo.
2T

N()\) :#{/\k A< )\} ~
D. Hilbert was attending these lectures and predicted as follows: “This theorem would
not be proved in my life time.” But, in fact, Hermann Weyl, a graduate student at that
time, was also attending these lectures. Weyl proved this conjecture four months later
in February of 1911.

We will prove this in specific examples such as rectangles and the torus. Later on we will
prove the analogue result for compact Riemannian manifolds (M, g). Let \g < A\; < ...
be the Laplace eigenvalues repeated according to its multiplicity. Then

Wn

M n/2
(27T)nV0l( YA A — 00

N\ ~

where w,, is the volume of the unit ball in R"™.
In particular,

J (wnVol(M))2/m ’

j — oo.
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1.4.2 Inverse problem: Can you hear the shape of a drum?

Suppose you have perfect pitch. Could you derive the shape of a drum from the music
you hear from it? More generally, can you determine the structural soundness of an
object by listening to its vibrations? This question was first posed by Schuster in 1882.
As Berger says in his book A panoramic view of Riemannian Geometry,

“Already in the middle ages bell makers knew how to detect invisible cracks
by sounding a bell on the ground before lifting it up to the belfry. How
can one test the resistance to vibrations of large modern structures by non-
destructive essays?... A small crack will not only change the boundary shape
of our domain, one side of the crack will strike the other during vibrations
invalidating our use of the simple linear wave equation. On the other hand,
heat will presumably not leak out of a thin crack very quickly, so perhaps
the heat equation will still provide a reasonable approximation for a short
time...”

Infinite sequences of numbers determine via Fourier analysis an integrable function. It
wouldn’t be that crazy if an infinite sequences of eigenvalues would determine the shape
of the domain. Unfortunately, the answer to the question can you hear the shape of a
drum? is no. This was proved in 1992 by Gordon, Web and Wolpert [?]. Nowadays
many planar domains are known to have different shapes but exactly the same spectrum.

Figure: Two domains with the same eigenvalues
Picture from the paper LaplaceBeltrami spectra as Shape-DNA of surfaces and solids

Not all is lost. One can still derive a lot of information of a domain by knowing its
eigenvalues. Using the heat kernel, in 1966 Mark Kac proved the formula

Z e Mt ﬁ (area(Q) — V4rt length(9Q) + —Q;Tt(l - ’Y(Q))>
™
k=1

where v(€) is the genus of {2 and 2 is a polygon. The eigenvalues \,, are the ones corre-
sponding to the Laplacian on € enforcing ¢i|sq = 0. A year later McKean and Singer
(1967) proved the same result in the context of Riemannian manifolds with boundary.

This means that if you know the full sequence of eigenvalues of your favorite domain €2
then you can deduce its area, its perimeter and the number of holes in it!!

On a compact Riemmanian manifold without boundary Minakshisundaram (1953) proved
the analog weaker result
At 2
oMt _ volM+/R:cw—|—Ot)7
S~ (vl 4 ¢ [ Byl +0)

k=1
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where R, denotes the scalar curvature. So you can hear the dimension, the volume and
the total scalar curvature of a compact Riemannian manifold.

1.5 An extremely hard problem: understanding the eigen-
functions

Figenfunctions of the Laplacian play a key role whenever it comes to do analysis on
Riemannian manifolds. One of the main reasons is that they are the key ingredient to
carry an analog of Fourier series on manifolds. Indeed, as we shall prove later, we have

Sturm-Liouville’s decomposition. Give a compact Riemannian manifold (M, g)
there is an orthonormal basis ¢1,...,¢j,... of eigenfunctions of the Laplacian A, with
respective eigenvalues 0 < A\; < --- < \; < ... such that any function ¢ € L?(M) can
be written as a convergent series in L?(M)

o0
¢ = Z a;jp;
j=1

for some coefficients a; € R.

On the other hand, as already mentioned, we may interpret the eigenfunction ¢; as the
probability density of a quantum particle in the energy state A;. That is, the probability
that a quantum particle in the state ¢; belongs to the set A C M if given by

/A‘@ﬂzwg'

High energy eigenfunctions are expected to reflect the dynamics of the geodesic flow.
In the energy limit A — oo one should be able to recover classical mechanics from
quantum mechanics. In the following picture (taken from Many-body quantum chaos:
Recent developments and applications to nuclei) you can see how the dynamics of the
geodesic flow for two different systems is reflected on the eigenfunctions. In the left
column a cardioid billiard is represented. In the right column a ring billiard is shown.
In the first line the trajectories of the geodesic flow for each system is shown. Then,
from the second line to the fifth one, the graph of the functions |p;|? is shown for
A; = 100, 1000, 1500, 2000. The darker the color, the higher the value of the modulus.
One can see how a very chaotic system, such as the cardioid, yields a uniform distribution
(chaotic) of the eigenfunctions. On the other hand, a very geometric dynamical system,
such as the ring, yields geometric distributions of the eigenfunctions.
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L) ..
\ I
N
1 Se
\

e‘

A beautiful result about the behavior of eigenfunctions takes place on manifolds with
ergodic geodesic flow (like the cardioid above), including all manifolds with negative
constant sectional curvature. This result says that in the high energy limit eigenfunc-
tions are equidistributed.

Quantum ergodicity. If (M, g) is a compact manifold with ergodic geodesic flow
then there exists a density one subsequence of eigenfunctions {¢;j, }5 such that for any
ACM

vol(A)

: 2
B0 Jar 9 = Sol ()

k—o00
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By density one subsequence it is meant that inf,, W = 1. This result is due to
Schnirelman (1973) finished by Colin de Verdiere (1975).

Image processing. One may describe a give surface M C R? by a function such as
the normal vector. That is, to every point x € M you associate the normal vector at x

x — (n1(z),na(z), n3(x)).

Each function nj : M — R can be rewritten as an infinite series n; = Y .2 agj )cpl- by the
Sturm-Liouville decomposition Theorem. You may then truncate the series and work
with the approximates manifold described by the function

xH(Za(”% Za(z)% Za oilx >

a. M =Dragon. b-f. reconstructed manifold using N = 100, 200, 300, 500 and 900 eigenfunctions

respectively. Picture from paper Spectral mesh deformation.

This is a way of encoding the geometry of a surface to some extent using as little infor-
mation as you want (at the risk of having a worse approximation). In practice the the
way people have of computing eigenfunctions on the dragon is to discretize it and work
with a discretized version of the Laplacian and its corresponding eigenfunctions. For
instance, the method of approximating a surface by a finite number of eigenfunctions is
used to perform a change of the position of some part of the surface. Suppose you have
an armadillo standing on two legs (figure a) and you wish to lift one of its legs (figure
e) reducing as much as possible the amount of computations that need to be carried to
get the final result. What people are doing is to compute the first 99 eigenfunctions on
the (discretized) armadillo (figure b) and approximate the armadillo by them (figure
c). Then, you apply the transformation to the approximate armadillo (figure d). Do-
ing this is much cheaper -computation wise- than applying the transformation to the
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original armadillo. You may then add all the details to the transformed armadillo by
an algorithm called.

H!

I max

ﬂ b ' min

c d e

Picture from the article Spectral mesh deformation.

Another way of understanding the behavior of eigenfunctions is to study their nodal
sets. The set of points where an eigenfunction vanishes is like the skeleton of the
eigenfunction. Let us write

Ny, :={x € M : @;(x) = 0}.

Nodal sets play the role of the skeleton of your manifold. They encode several aspects
of the geometry of the manifold. This is illustrated in the following figure where the
nodal sets of some eigenfunctions on the armadillo are colored in blue.



1.5 AN EXTREMELY HARD PROBLEM: UNDERSTANDING THE EIGENFUNCTIONS 17

Picture from the article Laplace-Beltrami eigenfunctions towards an algorithm that “understands” the

geometry.

From a quantum mechanics point of view, nodal sets can be interpreted as the least
likely place for a quantum particle in the state ¢, to be. This is because [ N go? wg = 0.
J

One of the main problems about nodal sets is estimating their size. A famous conjecture
on this matter is known as Yau’s conjecture on nodal set’s sizes. It says that there
exist positive constants ¢, C' such that

cy/Aj S vol(Ny,) < CV/ A as j — o0.

Yau’s conjecture has only been prove on compact manifolds with analytic Riemannian
metric. This result is due to Donelly and Fefferman (1988).






CHAPTER 2

Laplacian in Euclidean spaces

Spectrum of the Laplacian

The aim of this chapter is to compute explicitly in some special easy cases the eigenvalues
and eigenfunctions of the Laplacian operator subject to different boundary conditions.
We first do this in one dimensional spaces (segments and circles). We then solve the
wave equation of an interval in detail and explain the importance of the first eigenvalue
and how it relates to the length of the interval. We then study two dimensional domains
such as rectangles and discs. We then prove Weyl asymptotics for the rectangle and
show how they encode the area of it.

Given a domain  with boundary (the reader might think of it as an interval, or a
membrane, or an arbitrary manifold) there are two important boundary conditions one
may impose on the solutions ¢ of the eigenvalue problem Ay = Ay :

Dirichlet boundary conditions: vlag = 0.

This is used for instance when your domain © C R? is a membrane and you fix its
boundary as if {2 was a drum. Since you don’t have any vibrations on the rim of a drum
you must have ¢|sq = 0.

Neuman boundary conditions: Oploa = 0.

Here v is the unit outward normal vector to the boundary 0€2. This condition is used
for example when a surface has a prescribed heat flux, such as a perfect insulator (the
heat doesn’t go through the boundary, when it hits it it stays in).
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2.1 Interval

Consider an interval [0, £].
— Dirichlet boundary conditions: ¢(0) = ¢(¢) = 0.

The eigenfunctions are
k
oi(x) = sin (%x) for k> 1

with eigenvalues A\ = (’““7“)2 for k > 1.

— Neumann boundary conditions: ¢'(0) = ¢'(£) = 0.
The eigenfunctions are
k
wr(z) = cos (%x) for k>1

with eigenvalues A\, = (’%)2 for k£ > 0.

Observations.
Note that if we scale our domain by a factor a > 0 we get A [(0,al)] = a% Ak [(0,0)].
Intuitively, the eigenvalue A\ must balance %, and so A ~ (length scale)™2. We also
note that we have the asymptotics

Ap ~ C k2

where C' is a constant independent of k.
For A > 0 consider the eigenvalue counting function

N(\) = #{eigenvalues < \}.

Proposition 1. (Weyl’s law for intervals) Write \; for the Dirichlet or Neumann
eigenvalues of the Laplacian on the interval Q = [0,£]. Then,

NOA) ~ lengih(Q) VN
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Proof. .
k l

N(\) = max{k : )\k<)\}:max{k: g;r <)\}Nﬁ.
T

Hear the length of a guitar string (solving the wave equation)

After the first half of the 18th century mathematicians such as d’Alembert and Bernoulli
developed the theory of a vibrational string. As one should expect, the vibrations of a
string will depend on many factors such us its length, mass and tension. To simplify
our exposition consider a guitar string of length ¢ which we model as the interval [0, ¢].
Assume further that the density mass and the tension are constant and equal to 1.
Today it comes as no surprise that the behavior of a vibrating string is described by the
wave equation. That is, if we write = for a point in the string [0,¢] and ¢ for the time
variable, then the height u(z,t) of the string above the point x after a time ¢ should
satisfy the wave equation
2

— 5
There are infinitely many solutions to this problem. But we already know that there
are constraints to this problem that we should take into account since the endpoints of
the string are fixed and so u(x,t) must satisfy u(0,¢) = 0 = u(¢,t) for all time ¢. In
addition having a unique solution to our problem depends upon specifying the initial
shape of the string f(z) = u(x,0) and its initial velocity g(x) = Oyu(z,0). All in all, we
are solving the system

Au(z,t) = (x,t).

— P u(x,t) = —Lu(z,t)  z€[0,4, t>0,

u(Ox,t) =0= u(ﬁi) t>0,
u(z,0) = f(x) x € [0,4],
Oyu(z,0) = g(x) x € 1[0,4].

A general sulution of this problem has the form
u(z,t) = ap(t)en(z), (2.1)

k=1
where

km o rkw

ai(t) = ay cos <—t> + by, sin (—t)
l l

The coefficients are ar = (f, ¢x) and by = (g, k).

The functions ¢y, are called harmonic modes for the string [0,¢]. Since f; = k7 is the
frequency of the wave y(z) = sin (’%x) the connection between the eigenvalues Ag
and the frequencies fi of the harmonic modes of the string is obvious:

szi\/g-

2
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Therefore, the higher the eigenvalue, the higher the frequency is.

Consider the Fourier transform of a function ¢ as

o) = [ plaeime,

—00

The Fourier transform of the function ¢y (z) = sin (%’x) is

o © =i/5(3(e- T ~o(e+ 7).

In th following picture the graphs of si(z) = Ay cos (%’ﬂx) for £k =1,2,3 and in the last
line we put the graph of s; 4+ so + s3.

AN AN AN AN ANTAY.
VoV VIV OV S

AR A () =50+ 5,0 +5(0

N AN
WO W W

0 +t

Picture from www-rohan.sdsu.edu/ jiracek/DAGSAW /3.4.html.

In the following picture the Fourier transform of the function s; + so + s3 is shown.

a2

a0

A2

'-f1 'fz 'fa

0 f

3

f

2

f

1

Picture from www-rohan.sdsu.edu/ jiracek/DAGSAW/3.4.html.
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If you pluck a guitar string then you obtain a wave of the form u(x,t) = > 72| o (t)r(x),
and by applying the Fourier transform to it you get

Fu,0)©) =i/ S et (s~ H1) ~o(e + 5T,
k=1

So you recover all the relevant frequencies and hence all the eigenvalues.

2.2 Rectangle

Consider a rectangle © = [0, £] x [0, m]. Separate variables using carthesian coordinates
x and y. That is, look for solutions of the form ¢(z,y) = f(x)g(y).

— Dirichlet boundary conditions: ¢|sq = 0.

The eigenfunctions are

¢ (7,y) = sin (%x) sin (%y) for j,k > 1,

and have eigenvalues

Aj = (%)2 + (%)2 forj, k > 1.

— Neumann boundary conditions: 0,p|aq = 0.

The eigenfunctions are

¢ (z,y) = cos (%x) cos <%y> for 5,k > 0,

and have eigenvalues

Ajk = (%)2 + (%)2 forj, k > 0.

In the following picture the eigenfunctions on a square are shown.
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Ay Ay

In the following picture the eigenfunctions on a square are shown as if the were seen
from above.

Observation

Note that if we scale our domain by a factor a > 0 we get A\ (aQ) = ;15 Ak (Q) and so
the eigenvalue A\ must balance A. Again, A ~ (length scale)~2.



2.2 RECTANGLE 25

Hearing the area of a rectangle (computing Weyl asymptotics)

For A > 0 consider the eigenvalue counting function
N () = #{eigenvalues < A}.

Proposition 2. (Weyl’s law for rectangles) Write X\ for the Dirichlet eigenvalues of
the Laplacian on the rectangle @ = [0, ] x [0,m]. Then,

area(S2)

i A

N(A) ~

Proof.

NV :#{(j,k) ENxN: (%)Z (%)2 < )\} — #{(.k) ENxN: (j,k) € B}

2 2
where E, is the first quadrant of the ellipse < ﬁ"’z /W> + ( W\Zz /W) < 1. To each point
(4, k) € E, with the square

Rjp=[—1j]x[k—1Kk.

Vam

™
L

Since all these squares lie inside E, we get

area(€)

i A

N(\) < area(E, ) = iw(ﬁe/ﬂ)(ﬁm/ﬂ) -

Also, the union of the squares covers a copy, E,, of E, translated by (—1, —1):

<EA N{(z,y): >0,y > O}> C U Rj.
(4,k)EE,
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Comparing areas shows that

1
N(A) = (VM) (VAm/m) = VA7 =V dm/x
4 s
_ area(Q)A _ perimeter($2) VN
47 27
O
Since N(A;) = j, Proposition 2 yields j ~ %;Q))\j and so we obtain

Corollary 3. Write Ay < Ay < ... for the Dirichlet eigenvalues of the Laplacian on
the rectangle Q = [0,£] x [0,m]. Then,

' 47y
7 area(Q)

as j — oo.

2.3 Disc
Consider a disc Q = {x € R? : |z| < 1}.

In order to compute the eigenfunctions on the disc we need to separate variables us-
ing polar coordinates r and 6. We first derive a formula for the Laplacian in polar
coordinates. Since r = \/2? + y? and tanf = y/x, one has

Jp oz  Opy
dr  Orr 00r?
Op Odpy  Opux
oy Orr  00r?

Therefore,

Po 220wy Py g Pp  yiO0p  ayde
ox2 12 or? r3 orod  rt 902 3 Or rt 00

and

Po_ P, o Po PP PO _aybp
oy 12 or? r30rof  rt 002 13 or rd 90"

It follows that the Laplacian applied to ¢ has the form

P o 0% 10p 19%

np=-L2 Do |
¥ ox?  Oy? or?2  ror r2002

Therefore, the Laplacian in polar coordinates takes the form

A__ 872+12+i872
- or2  ror r2002)°
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We now look for solutions of the form ¢(r,8) = R(r)®(6).
From Ap = Ap we get

~(R/()®B(6) + LR (r)D(0) + RV (0)) = AR()(6)

and therefore

Ri) (R"(r)2(0) + %R’@«)@(@) + %R(r)@”(@)) = _q;/(g
This means that there exists k such that
—0"(0) = k*®(0)
and
R'(r)®(0) + %R'(T)CD(H) +(r- ’i)R(T) 0.

Set 2 = vAr and J(x) = R(z/v/\). Then,
22 J"(x) + 2T (2) + (2* — k*)J(x) =0

which is known as Bessel’s equation. The solution for it is the k-th Bessel function

e (_1)5 T k426
J’“(x)zzg!(k+z)!(§> ‘

£=0
Since R(r) = Jp(V/ A7), we get that
i (r,0) = @k (8) (VA7)

are eigenfunctions of A where ®(0) = aj, cos(k6) + by, sin(kf). The eigenvalue of ¢; has
eigenvalue A.

Let us now impose boundary conditions:

Dirichlet boundary conditions: We ask ¢p(1,0) = 0 for all § € [0,27]. This implies
Ji(vX) = 0 and so v/X must be a zero of the k-Bessel function.

Neumann boundary conditions: We ask O,¢p(1,0) = 0 for all § € [0,27]. This implies
JI(V/A) = 0 and so v/A must be a zero of the derivative of the k-Bessel function.

In the figure below, the first eigenfunctions on the disk are shown.
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e« 8
& O QO
O RGN

The following are the eigenfunctions shown as if they where seen from above.

2.4 Harmonic functions

Let © C R™ be an open connected region. A real valued function ¢ € C?(Q) is said to
be harmonic if
Ap =0.
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The theory of harmonic functions is the same as the theory of conservative vector fields
with zero divergence. Indeed, for any vector field F' in a connected region 2 C R™ one
has that one has curl ¥ = 0 and divF = 0 if and only if there exists a harmonic potential
© making F' = V. An example that we already mentioned in the introduction is that
of an insulated region. Imagine a thin uniform metal plate that is insulated so no heat
can enter or escape. Some time after a given temperature distribution is maintained
along the edge of the plate, the temperature distribution inside the plate will reach a
steady-state, that will be given by a harmonic function ¢.

Throughout this section we write B,(z) C R™ for the ball of radios r centred at x € §2
and S, (z) C R™ for the corresponding sphere. We set

¢n = vol(S1(0))

Theorem 4 (Mean value Theorem). Let @ C R™ and let ¢ € C%*(Q) be a harmonic
function. Then, for each x € Q and v > 0 such that B,.(x) C Q one has

o) = g [ e dots) (22)

Proof. Without loss of generality assume that = 0. By Green’s identities, for any
U C R" open and ¢, € C1(U),

/ (6AG — pAY) da = / (606 — $O) do. (2.3)
U oU

For 0 < ¢ < r set U := B,(0)\B-(0). Define ¢ := ¢ and ¥(y) := |y|>~™ whenever
n # 2 and ¥ (y) = log(|y|) when n = 2. Let us treat the case n # 2 (the other is done
similarly). It turns out that

Ay =0 on
and o0 "
1-n 1-n
o150 = 2—n)r and "5, 0) = —(2-n)e "
Then,

0= /(@AdJ — PAyp) dx
Q
= / (Y0, — pd,1h) do — / (VO — @O,1)) do
Sr(0)

S:(0)

= 7‘2”/ Oypdo — 52”/ Oy do
Sr(0) Se(0)
—(2— n)r1"/ pdo+ (2 — n)sln/ pdo
5r(0) Se(0)

It is also clear from (2.3) that if we pick U := B,(0) or U := B.(0), ¢ :== 1 and ¢ := ¢,

then
/ Oppdo =0 and / Oypdo = 0.
5,(0) 5.(0)
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Therefore,

0= —rl_”/ odo 4+ et / pdo.
Sr(0) S5:(0)

By continuity of ¢,

1 1
i o PP = s [ et )

e—0

A function ¢ that satisfies (2.2) is said to have the mean value property. Satisfying
the mean value property is equivalent to

n

() = /B ROL (2.4)

r’ey,

Indeed, equation (2.4) follows from integrating ¢(x)r"~! with respect to r. Equation
(2.2) follows from differentiating ¢(x)r"™ with respect to 7.

In addition, the mean value property is also equivalent to satisfying

o(z) = = / o+ rw) dS(w). (2.5)
51(0)

Cn

where dS is the area measure on the unit sphere. This follows easily from performing
the change of variables y = x + rw.

Next we prove a converse to the Mean value Theorem.

Theorem 5. Let Q C R™ and ¢ € C(Q) satisfy the mean value property. Then ¢ is
smooth and harmonic in €.

Corollary 6. Harmonic functions are smooth.

Proof of Theorem 5. Let u be a Friederich’s mollifier. That is, u € C§°(B1(0)) is a
radial function satisfying | B (0) W(z)dx = 1. For £ > 0 define

ue(y) == L (y) :

en €

We will prove that ¢(x) = u. *p(x) for x € Q with with 0 < e < dist(x, 9Q). Since u. is
smooth, it will follow that ¢ is smooth. In what follows, since u is radial, we introduce



2.4 HARMONIC FUNCTIONS 31

v(r) := u(rw) for r € [0,00) and w € S1(0).
ue * p(z) = /Qw(y)ue(y —x)dy

- / oz + y)ue(y)dy
Q

= ;n 0 ez +y)u (g) dy

=/ p(z + ey)u(y)dy
B1(0)
1
:// o(x + erw)u(rw)r" ' dS(w) dr
0 J51(0)
1
= v(r)r" ! T+ erw w) dr
= [ o /Sl(o)ﬂ T erw) dS(w) d

1
= go(a;)cn/O v(r)r™ 1 dr
= u(x).

It remains to show that ¢ is harmonic. Since Ay is continuous, we deduce that Ap =0
from the fact that for all » > 0

/ Ap(y)dy = = —/ Oup(y)dS(y)
By () Sr(z)

or

= =" 2 (enpl)

=0.

= _r"—lg / o(z + rw)dS(w)
51(0)

Harmonic functions are analytic (Exercise).

1. Fix # € R” and let R > 0. Show that if ¢ € C?(Bgr(z)) N C(Bg(z)) is harmonic,
then

n
|0z, ()| < EHSOHLoo(BR(I))-
Hint: Prove and use that d,, is harmonic.

2. Let ¢, x and R as in the previous part. For m € N, prove by induction that there
exists a constant C' > 0 independent of m,n and R such that

nmC™ lm!
o < -

for any multi-index o with |a| = m.

3. Prove by Taylor expansion that any harmonic function ¢ on 2 C R™ is analytic.
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Theorem 7 (The Maximum Principle). Assume Q C R™ is connected and open. If ¢
18 harmonic and real-valued on €2, then

either  p(x) <supyp Vz €, or © = sup .
Q Q
Proof. Consider the set
A:={z€Q: p(r)=supy}.
Q

The set A is clearly closed in A. The set A is also open. Indeed, if ¢(x) = supgq ¢ then
©(y) = supq ¢ for all y in a ball centred at x for otherwise the Mean Value Theorem
would lead to a contradiction. Since A is both open and closed in © we conclude that

A=Qor A=10. O

Theorem 8. Suppose Q C R™ is open, and Q is compact. If ¢ is harmonic and real-
valued on , and continuous on €1, then the maximum value of ¢ is achieved on 0L2.

Proof. If the maximum is achieved at an interior point, the ¢ must be constant on the
connected component of €2 that contains such point, and therefore the maximum is also
achieved at the border. O

Theorem 9. Suppose Q is compact and that ¢, are harmonic on  and continuous
up to 0. If plaa = Y[sq, then

=1 on .
Proof. Consider the functions ¢ = ¢ — ¢ and ¢ = ¥ — . Both of them are harmonic
and equal to zero when restricted to the boundary. The result follows from the fact that
their maximums are achieved a the boundary. O
Dirichlet energy method. Fix f € C(02) and consider the space
B={s€CQ): dlon = f}

and define th Dirichlet’s energy of ¢
1 2
E(¢) =5 | [Vo(z)|"dz.
Q

Theorem 10 (Dirichlet’s Principle). Let Q2 be open and bounded. Consider the problem

Ap=0 inQ
(*){ -
o=rf on 0).

The function ¢ € B is a solution of (x) if and only if

E(p) = min B(9).
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Proof. Suppose ¢ solves () and let ¢ € B. Then,
0=/ Ap(p — ) dx
Q
= / V@-V(so—w)dx—/ O (o — 1)
Q o0

— [1VePds~ [ Vo Tuds
Q Q
1
— [[19ePds+ 5 (90 = @) = Vel - |V0P)d
Q Q

1 1
> 5 [ velds =5 [ [vufs,
2 Jo 2 Jo

/ V|2 < / Vyl2da,
0 0

Since 1 is arbitrary, it follows that ¢ minimizes the energy.

Therefore,

Suppose now that ¢ minimizes the energy. Then, for any 1 € C3(2) we must have that
d%E(cp + €1)|e=0 = 0. Observe that

1
Bly-+e0) = 5 | (96l +2:VV + |V

and therefore,

d 1
B +ev) =3 [ (VpVy+ 26V,

It follows that

d
P+l = [ Vevude

We then must have [, Aptpdr = 0 for all ¢ € C3(9), and so Ap = 0 which implies
that ¢ is harmonic. O






CHAPTER 3

A very brief review of differential and
Riemannian geometry

3.1 Differentiable Manifolds
A topological manifold is a topological space (E, ) so that

1. It is Hausdorff.

2. Vz € FE there exists (U, ) with U open and x € U, such that ¢ : U — ¢(U)
is a homeomorphism. The pair (U, ¢) is called chart and the real numbers
(z1,...,2y) = @(x) are called local coordinates.

3. (E,7) has a countable basis of open sets.

A CFk-differentiable structure on a topological manifold M is a family of charts
U = {(Uq, pa} so that

L. UUs=M

2. If U,NUg # 0 then pgop, ! 1 00(UaNUg) — 0(UaNUg) are C* with C* inverse.
In this case we say that (Ua, po) and (Ug, ¢g) are compatible.

3. Completness property: If (V) is a chart which is compatible with every (Uy, ¢q) €
U then (V,¢) € U.

Examples of differential manifolds include R", the sphere S™, the torus T". Products
of manifolds are manifolds as well.

Let M be a manifold and W C M open. We say that f : W — Ris a C*-differentiable
map if for all z € W there exists (U, p) coordinate chart (with = € U) so that
fop lipWNU) = Ris Ck.
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Let A C M. We say that f : A — R is C* if it has a C'° extension to an open set
U C M such that A C U.

Let M and N be differentiable C*- manifolds. We will say that f : M — N is
a CO’-differentiable map, ¢ < k, if forall + € M there exists (U, ) coordinate
chart with x € U and (V,4) coordinate with f(x) € V so that f(U) C V and
Yo fop t:oWNU)— R is Cldifferentiable as a map of euclidean spaces.

A manifold with boundary is a Hausdorff space with a countable basis of open sets
and a differentiable structure {(Uy, po) : @ € A} such that it has compatibility on over-
laps and ¢, (Uy) is open in H” = {(z1,...,2,) : 1 > 0} . We denote the boundary of
M by OM.

Examples of a manifold with boundary include intervals (a,b), (a,b], [a,b], balls, open
subsets of R™ with some (or none) pieces of its boundary attached, open subsets of a
manifold.

Let f,g be C* in a neighborhood of x € M. We say that f ~ g if there exists U C M
open so that f(y) = g(y) for all y € U. The class [f], is called germ of C* function
at x. The set of germs at z is denoted by C*°(z,R).

Let x € M and X, : C*®(z,R) — R. If for every chart (U, ) about x we have that
there exist aq,...,a, € R so that

n o1
X1 = a 209 (o,
i=1 !

we will say that X, is a tangent vector at x . If the equation holds for some chart
(U, ¢) about x, then it holds for every C'*°-compatible chart overlapping at .

The tangent space to M at x is the vector space of tangent vectors based at x. We
will denote it by T, M. If n = dim M then dim T, M = n.

Given a coordinate chart (U, ¢) about x € M the basis {(%)

the natural basis of T, M associated to this chart, where

(aii)x[f]f = 8{;51(@(%)).

, 1 Sign} is called

x

Given f : M — N a C*°-map and x € M we define the push-forward of f at = as
follows:

(fe)e : TeM — Ti)N (f*)xXz([g]f(m)) = Xu(lgo fla)-

The push-forward is what we know as the differential of a function. For this reason we
sometimes write

(f*)z =df.
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With this definition we have

(aii) = ((8ii)so(x>)'

Let ¢ and ¢ be charts about x. Let

Yoz, mn) = (i@, Tn), YT T0)

(52:). = T e (5,).

We define the cotangent space to x at M to be the dual space of T;M. We denote
it by 7M. The dual basis of {( )z, 1<0< n} is denoted by {(dz;),, 1<i<n}
and it is known as the natural ba51s of TXM.

Then

Let ¢ and v be charts about x. Let

ot (Y1, yn) = (@1 (W1 Yn)s - (Y1, -, Yn))-
Then

Bxl

The tangent bundle of M, denoted by TM is defined as follows:

TM := ]_[ T, M.
rxeM

The tangent bundle T'M is equipped with a projection map « : TM — M defined as
m(Xy) = a for X, € T, M.
A vector field is a section of the tangent bundle. That is, a map

X M—>TM

that satisfies that
moX(z)=X(z).

To each point = € M the vector field X assigns a tangent vector at x, X (z) € T, M.
The space of C¥-vector fields will be denoted by ' i (T'M).

Properties of vector fields:
L X(f+g)=X(f)+X(g)
2. X(\f)=XX(f) VAeR

3. X(fg) = 9X(f)+ fX(9)
The cotangent bundle of M, denoted by T*M is defined as follows:

"M =[] T;M
zeM
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3.2 Differential forms

Let V be a real n-dimensional space and let V* be its dual space. We define the space
of alternating k-forms as follows:

AV ={w: V@ @®Vtimes) — R : w is linear and alternating}.

Observe that dim AF(V*) = (:ik]é)!. The form w is linear and alternating if w(v, ..., vy)

is linear in each argument and

w(’Uﬂ(l), e avw(k)) = (—1)7rw(’l)1, ce ,’Un).
AM(T*M) = [1,ep A¥(TyM). Choose a chart (U, ) about = with local coordinates
(z1,...,2,). An element w, € A*(T;M) is called k-form at z and can be written as
Wy = Z Qi ..y, (d.%'“)x FANRIREIVAN (dl’zk)x

1<i1 << <n

A(T*M) is a manifold of dimension n + %

We define a k-form on M as a section of the bundle 7 : A*(T*M) — M. That is, a C™
map w : M — A¥(T*M) so that mow = idy;. We denote the space of k-forms on M by
QF(M). We write Q*(M) := @p_, Q*(M) and Q°(M) = C®(M,R). Let f: M — N
be a C* map. We define the pull back of f as the map f*: Q*(N) — Q*(M) so that

1. f*(g9) =go f for f € Q°(N) = C>®(N,R).

2. (f*w)a(X1, ..o, Xp) = Wiy (fe X1, .., fuX) for w € QF(N) with & > 1.
Properties of the pull-back map.

L. fYlwAT)= ffwA f*r

2. f*(gw+hT) = f*(g) ffw A f(h) f*T

3. (fog) =g of”
Proposition. Pull-backs and d commute:

d(f*w) = f*(dw).

Integral of n-forms. Let M be an orientable manifold of dimension n.

1. If w € Q*(R™) has compact support, and w = fdz! A--- A dx™ then

/ W= fdx' ... dz".
n ]Rn

2. If we Q"(M) we define

o E e

aca

Ol IIRCARI

a€Ea (P(Ua)

where {(Ua, pa) : a € A} is a positively oriented atlas and {p, : @ € A} is a
partition of unity subordinate to {(Ua, ¢a) : @ € A}.
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Theorem 11 (Stokes Theorem). Let M be a compact differentiable manifold of dimen-
sion n with boundary OM. Let w € Q""1(M). Then,

/ dw:/ w.
M oM

3.3 Riemannian Geometry

A Riemannian Manifold is a pair (M, g) where M is a C° manifold and ¢ is a map
that assigns to any x € M a non-degenerate symmetric positive definite bilinear form
(-, ->g(x) : TuM x Ty M — R such that for all X,Y € T'cee (T'M), the map

is smooth.

Notation. Let (U, ¢) be a chart with local coordinates (x1,...,zy), and consider the
corresponding natural basis {(%)x, cee (%)x} of T,M. We adopt the following no-
tation:

9ij(x) = <(aiz)x’ <£‘j)x>g(m)'

We will also denote by ¢/ the entries of the inverse matrix of (g;;)i;-

Proposition. Let M and N be manifolds and let g be a Riemannian metric on N. Let
f: M — N be a C* inmersion. Then the map f* defined below defines a Riemannian
metric f*g on M:

(X (), Y (@) (frg) () = (X (), Y () g -
Theorem. Every manifold carries a Riemannian metric.
Examples of Riemannian manifolds are 2 C R”, H", S™ and T".

Given two Riemannian manifolds (M, gar) and (N, gn) we say that amap ® : (M, gpr) —
(N,gn) is a local isometry provided

P*(gn) = g

If ® is a local isometry and a diffeomorphism at the same time, then we say that ® is
an isometry.

L?- Integrable vector fields. Given any two vector fields X,Y € D' (TM) the

function on M z + (X(z),Y(2))4(z) is smooth and real valued. Therefore, we may
define an inner product on I'cee (T'M) by

(X,Y) = /M<X<x>,Y<x>>g<x> wy(z).



40 A VERY BRIEF REVIEW OF DIFFERENTIAL AND RIEMANNIAN GEOMETRY

The completion of I'cee (T'M) with respect to (-, )4 is a Hilbert space denoted by
T,2(TM).

Geodesic normal coordinates. For (z,v) € TM write 7,, for the geodesic on M
starting at x with velocity v.

If the geodesic 7,4 (t) is defined on the interval (—4, ), then the geodesic vz 40, a € R,
a > 0, is defined on the interval (—d/a,d/a) and vy 40 (t) = V20 (at).

In addition, given z € M, there exist a neighborhood V of z in M, a number € > 0 and
a C° mapping v : (—2,2) xU — M,

U={(y,w) e TM; y eV, we Ty, lw|<e},

such that t — 7, ,(t), t € (—2,2), is the unique geodesic of M which, at the instant
t = 0, passes through y with velocity w, for every y € V and for every w € T,M, with
lw| < e.

The exponential map exp : Y — M is defined by

v
exp(y,v) =v(1,y,v) = v (\v!, Y, !”vl) . (y,v)el.

In most applications we shall utilize the restriction of exp to an open subset of the
tangent space T, M, that is,

exp, : B:(0) C T,M — M,

exp, (v) = exp(y, v).

Given x € M there exists € > 0 such that the exponential map exp, : B:(0) C T, M —
M is a diffeomorphism. Taking an orthonormal basis vy ..., v, of T, M one can define
a diffeomorphism

B.(0) C R" — B.(0) c M
n
(X1,...,@p) — €Xpy (szvJ
i=1

The coordinate map y — (z1(y),...,zn(y)) is called geodesic normal coordinates.
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The Laplacian on a Riemannian manifold

4.1 Definition

Gradient. Given a Riemannian manifold (M™",g) and a function ¢ € C*°(M), the
differential map dyp : T, M — R is linear for all x € M. Thus, there exists a vector
field on T'M named gradient of f and denoted by V4 so that

(Vyo(z), Xo)g(z) = dep(Xz) for all X, € T, M.
Formally speaking, here is the definition.
Definition 12. The gradient is the operator

Vy: C%(M) — T (TM)

making

(Vgp, X)g = dp(X) for all X € I'cee (TM).
Let’s find the expression for the gradient vector field in local coordinates (x1,...,zp).
It has to be a linear combination of the form Vg = > aia%i for some coeflicients

: 0 o) ij O
a; € C*°(M). Since dgo(a%i) = go We get 14 amgmi = 5. and so a; =371 g¥ 5=

which implies

" 0p O
— igor Y
vgso Z g 8@ aﬂfj '
i,7=1
Since d(¢ + 1) = dp + dvp for all ¢, € C1(M) we get
Vel + 1) = Vgp+ Vgih.
Furthermore, since d(p - 1) = ¢ - dp + 1 - dp we have

Vol -9) =9 Ve + - Vyp.
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Divergence. Given a n-form w € Q*(M) where n =dim(M), and any vector field X
on M one can define the (n — 1)-form ¢, w € Q" ! by

wa(Xl, ce ,Xn_l) = w(X, Xl, ce 7Xn—1)

where X1,...,X,_1 are any vector fields on M. Since d(txw) is an n-form we know
there must exist a number div, X making

d(tyw) =divy X - w.

If wy is the volume form of (M, g), then the number div, X := div,,, X is known as the
divergence of X. Formally speaking we have the following definition.

Definition 13. The divergence is the operator

divy : Toee (TM) — C(M)

making

d(tywg) = divgX - wy for all X € I'cee(T'M).
We will now find the expression for div, in local coordinates (z1,...,2,). For X =
> b-% € Lo (T M) we get

o b aN_ [y b o
Ly Wy oz 0m T O = wy Bz B B

_ (_1)—1 Y Y
=(-1) wg<8w1,..., ,...,(%Un)
= (=1)"1/|det g| day A --- A dxy, <
=bi(=1)"""/| detgl.

Therefore,
d(1ywg) =d (Z bi(—1)"1y/|det g| dzy A Adzg A A d:pn>
i=1
n 9 .
= Z(—l)’_lg(bm/ |det g|) dxs Adxy A+ ANdxzy A -+ Adxy,
i=1 ‘

= E ;(bi\/ |det g|)dxzy A -+ Aday,
;i
i=1

I 9
:’detg|26$i(bﬂ/|detg|) - Wy,

and so, for X =Y ", bj - € Toee (TM),
J
n

1 0
divgX = ——— ——(b;i/|det g|). 4.1
X = e g (e[t (@)
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Since for any X,Y € I'(T'M) and w € Q" (M) we have ¢
that

xiyW = Lyw + tyw it follows

divy(X +Y) = divy X + div,Y.
Furthermore, from (4.1), we get that for any ¢ € C*°(M)
divg(pX) = pdivgX + (Vgp, X) . (4.2)

We are now in conditions to define our star operator known as the Laplacian, or Laplace
operator, or Laplace-Beltrami operator.

Definition 14. The Laplacian on (M, g) is the operator
Ag: C¥(M) = C*(M)
defined as
Ay = —divy o V,.
Since both V, and div, are linear operators it follows that for any ¢,y € C*(M)
Aglp+19) = Bgp + Agth.

In addition we have

Aglp - ¥) = pAgp + Ay — 2(Vgp, Vi) .

In order to prove the last equality we observe that from (4.2) we have

divg(¥Vgp) = =1 Agp + (Vgp, Vi),

and so

Ag(p - ) = =divgVy(p - )
= —divy (V) — div(¢V )
= pAgp + Ay = 2(Vgp, V1)) .

Laplacian in local coordinates. From the expression of V, and div, in local coordi-
nates (z1,...,x,) it is straightforward to see that

g B
<9”\/ | det 9|a,) :
Lj

1 0
A= ——— i
I \/\detglijglaxi

It is worth mentioning that from all the local expressions it follows that if ¢ € C*(M)
then Vo € CF1(M) and so Ayp = —div,Vyp € Ck2(M).

Average over orthogonal geodesics (local definition). Given x € M there exists
¢ > 0 such that the exponential map exp, : B:(0) C T, M — M is a diffeomorphism.
Taking an orthonormal basis vy ..., v, of T, M one can define a diffeomorphism

B.(0) CR" — B.(0) C M

n
(T1,...,2n) — exp, (Zazw»

=1
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The coordinate map y +— (z1(y), ..., zn(y)) gives rise to the so called geodesic normal
coordinates.

For x € M consider an orthonormal basis vy, ... v, of T, M and write (z1,...,x,) for
the geodesic normal coordinates system around x determined by such basis. Since in
these coordinates g;;(x) = d;; and gﬁf () =0 for all i, 5,k =1,...,n, it follows that

Ag@(x) = - ")
— Ou;

().

For each i = 1,...,n let 7; be the geodesic satisfying the conditions v;(0) = z and
4i(0) = v1. Since for any 7,5 = 1,...,n we have x;(;(t)) = d0;; t, then

0% d?
927 @) = (il

It follows that

Zdtﬂ) vilt ‘t 0

Alternative definitions.

- The Laplacian is sometimes defined as A, = —tracey(Hess;) where Hess, is the Hes-
sian operator on (M, g).

- If we write J, for the adjoint operator of d, then A, = d,d. This definition can be
generalized to define a Laplace operator acting on forms. Indeed, Ay : Q*(M) — Q* (M)
is defined as Ay := d4d + dd,.

Qg _ ij o2 . . .
Since Ay = Zij 9" 52,02, +lower order terms, the Laplacian is also characterized as

the only symmetric linear partial differential operator whose principal symbol is —|| - Hg

4.2 Examples

Laplacian on R”.

Let grn be the euclidean metric on R™. Since g;j(x) = &;; for all € R" and ¢,j =
1,...,n it follows that

grn — T 2
o
iila ?

Laplacian on H.

Consider the upper half plane H = {(x,3) € R? : y > 0} endowed with the hyperbolic

metric < )

@w‘,_. o
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It is straightforward that

2 2
2 2
Bos =V gz Vg

Laplacian on S2.

Let gs2 be the round metric on the 2-sphere S2. Endow the sphere with spherical
coordinates

T:(0,7) x (0,21) — S? C R3
T(0,¢) = (sinf cos ¢, sinf sin @, cosh).

Since

9s2(0,9) = ( (1) sn?Qa ) )

we get:

Ay :—1(6< ]detgsz|a>+a< | det gg2| — >>
s? \/W 00 00 0¢ 0¢
1 0 0
= sing (aa (Smaae> (sm9 8¢>>
0 0 1
T sinfog (51n969> sin2 6 6(;32
And so, in spherical coordinates,

19 ) 1 92
Ngy=—— 2 (sing 2 ) -~ 2 4.
952 = " 5in 0 90 (Sm aa) sin? § 0¢> (43)

4.3 The Laplacian under conformal deformations (Exer-
cise)

—

Consider a conformal deformation § of the metric g. Thas is, § = efg with f € C®(M).
When you modify a metric conformally all you are doing is to change the distances
between points while maintaining the angles between vectors. The aim of this exercise
is to prove that

A;=e A, + (1 - g)eﬁfvgf.

Notice that on surfaces this formula simplifies to Az = e/ Ay. Operators that satisfy
such law are known as conformally covariant operators. We suggest you prove the
assertion by showing the following:

1. Vg = €_fvg.
2. divg(X) = divy(X) + Ze /X (f).

3. 85 =e A+ (1-5)e 2V, /.
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4.4 The Laplacian commutes with isometries

The purpose of this exercise is to show that the Laplace operator commutes with isome-
tries. That is, given any two manifolds (M, gar), (IV, gn) and an isometry ® : (M, gas) —
(N, gn) between them, show that

Agy, & = B A, .

9mMm

To simplify your approach to this problem we suggest you break its solution into three
steps. Using the definitions of V4 and div, show:

1. &, V,, "=V

9m gN -

2. @, divy, ®* = divy,,.

3. Ay, =D*A

9m gN *

Solutions:

1. Let ¢ € C1(N) and V a vector field on TN. Then

(DY 4y, D (), V), = (2:V,, ®* (), <I>*<I>*_1V>gN

- <V9A{(I)*((p)7 (I)*_1V>gM
= d(®"p)[® V]
= . 2.[01V]
= de(V)
= <V9N90a V>9N .
2. If we fix any X € I'(T'M), the assertion would follow if could prove d(¢, wy,,) =

®*divy, Pu(X) - wy,,. But this is equivalent to showing that (®*)~!(di,wg,,) =
divg, ®.(X) - (®@*)"Lw,,,, or what is the same, we need to show that

(@)™ (1 wgy) = divgy (2X) - wgy.-
This last equality is true since (®*) (1 wg,,) = o () wg,, )

AQM(I)* = dngMng(I)* = dngM ((I)*)_lqykv P

am
= diVQM ((I)*)ilvgzv = (I)*((I)*)ilding(q)*)ilv
= ®*div,, Vyy = A,y

gN

4.5 The Laplacian and Riemannian coverings

Given two Riemannian manifolds (M, gys) and (M,gM), amap p: M — M is a
Riemannian covering if p is a differentiable covering (that is, a local surjective home-
omorphism) that is a local isometry. In particular, p*gys = gy If p: M — M is a
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Riemannian covering, the deck transformation group of the covering p is the group
of homeomorphisms « : M — M satisfying

poa=p.

When p : M — M is a Riemannian covering, the elements of the deck transformation
group are isometries. Indeed, they are homeomorphisms and local isometries:

Qg = op'gy = (poa)gn =p"9gm =95

If p: M — M is a Riemannian covering, the functions on M can be identified with that
of M that are invariant under the desk transformation group. Indeed, if p: M —C
satisfies ¢ o a = @ for every deck transformation «, then there exists a unique function
@ : M — C for which = ¢ op. In particular, the eigenvalues of M are precisely
those of M in whose eigenspace there are eigenfunctions of M invariant under the deck
transformation group. Indeed, if ¢ is an eigenfunction of A, of eigenvalue A invariant
under the deck transformation group, then there exists a unique ¢ : M — R such that
Ap op = Ap. On the other hand,

A=Ay =0y p0=D"Agy)p=2g,p0p

where we used that p is an isometry and that the Laplacian commutes with it. It follows
that we must have
Agp = Xp.

then ¢ o p is an eigenfunction of Aj;

In addition, if ¢ is an eigenfunction of A G

Indeed,

gm >

Ay (pop) =p"Dg, 0 =p " (Ap) =Apop.
Quotients by discrete group of isometries. A discrete group I' is said to act
properly on a Riemannian manifold (M ,gy) if for any ,7 € M there exist open
neighborhoods U and V' of & and § respectively such that #{y € ': 7 UNV #} < .
The group I' is said to act freely if for any ~1,v9 € I' for which there exists a point
& € M one has v, = 2. The following theorem gives the existence of a canonical metric
on a manifold obtained as a quotient by a discrete group of isometries.

Theorem 15. Let I' be a discrete group of isometries acting properly and freely on a
Riemannian manifold (M, g;;). There exists a unique canonical Riemannian metric gy
on the quotient M = M /T" such that p : (M, gy;) — (M, gn) is a Riemannian covering.

Examples of manifolds where we may apply this result are the circle, the torus and the
Klein bottle.

4.6 The Laplacian on product manifolds

If (M, g) and (N, h) are Riemannian manifolds, we can endow M x N with the product
metric: If mpy : M X N — M and 1y : M x N — M are the projections then the
product metric is defined as follows

XY generea) = 0 Yt ()@n) T 0 Y Dt (g)(an)
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where (z1,22) € M x N.

Note that by the Stone-Weirstass Theorem the set of functions (z1, z2) — ¢(x1)1(z2) €
C>®(M x N) with ¢ € C*°(M) and ¢ € C*°(N) is dense in L?(M x N). In addition, if
Agyd = Ao and Ay, 1 = B, then

AQM@QN (¢ : w) = ¢A9M@QN¢ + QSAQMGBgNd) - 2<V9M@9N d)’ VQMEBQN¢>QJ\/I€B9N
= QJZ)AQMQS + ququzZ)
=A+B)o-¢.

As we will show later, if M and N are compact, one can find an orthonormal basis {¢; };
of L>(M, gar) (reps. {¢;}; of L?(N, gn)) of eigenfunctions of A, with eigenvalues \;
(resp. of eigenfunctions of A,y with eigenvalues ;). It then follows that

{(z1,22) = @j(x1) - Yr(x2) }j 1 C CF(M x N)

is a basis of eigenfunctions of L?(M x N) with eigenvalues

{Nj + Br}jk-

4.7 Green’s theorem

Theorem 16 (Divergence theorem). Let M be a Riemannian manifold and let X €

Lo (TM). Then,
/ dz'ngwg:/ (X,v) o4
M oM

where v is the unit vector normal to OM .

Proof. We claim that
Lywg = (X, V) ay. (4.4)

Assuming this holds, since divyX wg = d(t,wy), we get

/dingwg—/ d(LXwg)—/ wag—/ (X,v)oq4
M M oM oM

as desired. To prove (4.4) let us first show that
0g = L,Wy.

Indeed, the metric h on M is defined as follows. Let z € OM and let vy,...,v,
be an orthonormal basis of T,M with v; = v € (T,0M)*. Let z1,...,z, be the
corresponding system of coordinates on M. Writing h for the metric on M we have

<a a>h:<8 a> for all 4,7 = 2,...,n. Note that
g

8$i’%j 8&%4@

Lng((fm,...,ai) :wg(y,(;;,...,ai) :ngg(j@,...,ai).
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To prove equation (4.4) we also need to show that 1, wy = (X, v), tyw,. But this follows
from the following chain of equalities:

wn (g o) = (X g )

:wg(<X’V>V’(38x2"”’8i1>
= <X,1/>Ll,wg<£c2,...,(9i1>.

O]

Theorem 17 (Green’s Theorem). Let (M, g) be a compact Riemannian manifold with
boundary OM. Let 1 € CY(M) and ¢ € C*(M). Then,

0
/Mw'Agd’ wg—/M (Vg1h, Vgo) wg — w'%% .

oM

Proof. From equation (4.2) and Green’s Theorem we have
/ (CRRAV) _/ (Vgth, Vgo) wy = _/ divg(¥Ve0) wg
M M M

—— [ w9, 0,
_ 96
ARG

O

Corollary 18. If (M, g) is a compact Riemannian manifold without a boundary, then

<1;Z)7 Ag¢>g = <vg¢a v9¢>g-

Corollary 19 (Formal self-adjointness). If (M, g) is a compact Riemannian manifold
without a boundary, then

<7!)a Ag¢>g = <¢a Agw>g .

Corollary 20 (Positivity). If (M,g) is a compact Riemannian manifold without a
boundary, then

<A9¢7 ¢>g Z O

Remark 21. All the previous corollaries are valid for a manifold (M, ¢g) with a boundary
where Dirichlet or Neumann boundary conditions are imposed.






CHAPTER D

Examples on manifolds

5.1 Circle

Consider the circle T = R/(27Z). The deck transformation group consists of the trans-
lations ay(t) =t + 2mj with j € Z. Then, the eigenfunctions of T are eigenfunctions of
—5722 on R that satisfy ¢(t) = ¢(t +27j) for all j € Z and all t € R. The eigenfunctions
are therefore

t i e* with k € Z.

Taking real and imaginary parts we get the functions
1, cos(t), sin(t), cos(2t), sin(2t), ..., cos(kt), sin(kt),...

with eigenvalues 0,1,1,4,4,...,k? k?,... respectively.

5.2 Torus

Let T' be an n-dimensional lattice in R™. That is, there exist v1,...,7, so that I' is
generated by {vie1,...,vnen} over Z where {ey,...,e,} is a basis of R™. Consider the
torus

T :=R"/T.
We define the dual lattice
I':=={zeR": (z,7) € Z forally e T'}.

Let A: R™ — R" be so that A(Z") =T'. Then, vol(T) = det A. Consider A* : R" — R".
Then (A*)~1(Z") = T'*. Therefore,

1

vol(T*) = det((4") ") = ———.
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Since the eigenfunctions of T are those of R” which are invariant under the deck trans-
formation group {ay(z) =2+ : v € I'} we consider the family of functions

oy(z) == 2@ y) for y e I'.

Clearly, ¢, is invariant under the deck transformation group. If you want, you may take
their real and imaginary part to get the eigenfunctions

L, sin(2mi(r,y)),  cos(2mi(z,y)), yeTl~

with eigenvalues
0, dAr’lyf’, 4an’lyf,  yel™
Let us see that the
{oy: yel™}
is a basis of L?(T).

We first check that these functions are linearly independent by induction: suppose

Oyps-- -5y, are linearly independent and suppose also that Zfill a;py, = 0. Since

k+1 k
Py, © Py, = Py;+y, We know that 0 = Zzil APy —ysr = Tht1 D _ig GiPy;—y,,,, after
applying the Laplacian we get Zle aidm2|yi — Yr1]*Oy—ye s = 0. It then follows that

a; = --- = ap = 0. Therefore ax+1 = 0.

To see that B = span{¢p, : y € I'*} is dense in L?(T) we use Stone Weirstarss Theorem.
Clearly B is a subalgebra. Let us see that it separates points. Fix two points z1, 20 € T
and assume x1 # 2 (then 1 — 29 ¢ I'). Suppose now that ¢,(z1) = ¢, (z2) for all
y € T*. Tt then follows that e*>7¥(*1=%2%) = 1 for all y € I'* and so (z] — x2,y) € Z for
all y € I' which implies that ;1 — 29 € (I'")* =T, and this is a contradiction.

Weyl’s law on the Torus

We continue to write wy, := vol(B1(0)). Denote by N(A) the counting function N(\) :=
#05: A < AL,

Theorem 22 (Weyl’s law on the torus).

wy, vol(T)

A2 A .
(271_)” 2 — OO

N(\) ~

Note that

N =#{j: N\ <A}
=#{yeT*: 4r?|y*> < \}
=#{y eT": |y| < VA 27}
= #{I" QBTJE(O)}-

We therefore define
N*(r) == #{I'" N B,(0)},
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and so we have N(\) = N* (%)

We have reduced our problem to show
Wn

N*(r) ~ wpvol(T)r"™ = VOI(T*)T r — 00.

Let P*(r) denote the number of polygons inside B, (0) and write C*(r) for the polygon
formed by all the parallelepipeds inside B;(0).

Observe that
P*(r) < N*(r) < P*(r + d).

On the one hand,
P*(r)vol(T*) = vol(C*(r)) < vol(B,(0)) = w,r".
On the other hand, if we write d for the diameter of each parallelogram, we get
(r —d)"w, < P*(r)vol(T")

for B,_4(0) C C*(r). We conclude

Wn
vol(T*)

(r=d)" < P'(r) S N'(r) S P*(r+d) < - “n_(r 4 d)"

5.3 Rectangular prisms

We work with rectangles Q = [0,71] X -+ X [0,7,] with Dirichlet boundary conditions.

Since we know that the eigenvalues for [0,;] are ff with j € Z, we know that the
i

eigenvalues of 2 are

2 (i Jn
™ (2++72L> jlv"'vjnGZJr'
71 777,
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Weyl’s law on rectangular prisms

Consider the prism © = [0, 1] x- - -X[0, 7] and the lattice I" generated by {vie1, ..., nen}
where {ej,...,e,} is the standard basis of R™. Then I'* is generated by {%, cel, ,‘;—Z .
It follows that

2
N()‘):#{(jl,,]n)ézg‘_ 7'('2 <i12_|_ _|_jn> <)\}

1 n
:{yGF*, y >0, \y|<\§}
#{I’*HB?(O)}
~ o
¥ (2)
on

Since N* (%) ~ N2 we get the desired result. Observe that vol(T*) =
1 11
%an = VOI(Q)'

vol(']l‘* )T

Theorem 23 (Weyl’s law on prisms).

wy, vol(€Y)

A2 A .
(271_)” 2 — Q0

N\ ~

5.4 Sphere

Let f(&1,...,&,) represent the spherical coordinate system for the sphere S™ C R*H1.
Then any z € R"! can be written as 7f(£1,...&,) for r > 0 and is represented by

the coordinates (r,&1,...,&,). We proceed to compute the euclidean metric of R*! in
terms of the round metric on S™. Notice that as vector fields in R"”

—_ = and

or Z or 8@ ;: Ji Ox;’

9 :’il orfi) ’fafi 9
8@ i1 8fj 83% 8{} 8:51
Therefore,

n+1
) =yt
k=1

an+1

n+1
Ofr
=r E ks =0,
] >9Rn+1 ag]

”“af of o 9
_ .2 kSJk _ .2
fj>an+l - ; o6 o6 <a§2 9€; >gsn

T
o

=
Rl

(o

~
&
Q;‘Qj
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It then follows that
(r.€) ( N )
n+1 5 = .
et 0 r%ggn(§)

It is straightforward to check that in these coordinates then

1 0 n 0
Aan+1 == _77”5 ( 67’) + Agsn-
Define

Pr. = {homogeneous polynomials of degree k},
Hp ={P € Py : AanHP =0},
H, = {P‘Sn : Pe Hk}

Proposition 24. The spaces Hy and Hy are isomorphic. In addition,
H,c{Y eC®(S"): Ay, Y =k(n+k—-1)Y}.
Proof. The idea is to prove that the restriction map

Hk—>Hk

has inverse

Hk—>Hk
Y s rhy.

Indeed, if Y € Hy, then Y = P|gn for some P € Hj. Since P is a homogeneous
polynomial of degree k we have

PGe) = Pl ) = el P () = ey ()

Let us see that if Y € Hy, then Y is an eigenfunction of Ay, . Indeed, Y = P|gn for
some P € Hy, and since P is homogenous of degree k, we must have P(r,£) = r*Y (€).
Then

0=A P

Irn+1

10 ombb—1y | ke
= =Y S () ALY

= —k(n+k—1)r*2y + 75727,V

gsn
=" 2(Ayen Y —k(n+k—1)Y).

O]

Since any Y € Hj are restrictions to the sphere of a harmonic polynomial, the space
Hy, is known as the space of spherical harmonics of degree k.
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Proposition 25. Write r?Pj,_y := {r?P: P € Py_s}. Then,
P = Hi ® 17 Pp_2.

Proof. We start defining an inner product on P;. For Q € P, and P =)  aqx® € Py,
we set

(P,Q) =) a,0°Q

which we may rewrite as (P, Q) = P(9)Q. Note that if both |a| = |3] = k, then

(20 xﬂ) _ {a! ifa=p

0 else.

In particular

(Zaa:ca,z:algazﬁ) = Zoz! Ao, by
[e% B [e%

It follows that (, ) is a scalar product on Py.
Note that if P € Py_s and Q € Py, and since r* =23 +--- + 22,
(Y’ZP, Q) = P(8)r2(8)@ = P(a) Aan+1Q = (P7 Aan+1 Q) =0.

This shows that H, is the orthogonal complement of 2P, _5 with respect to (, ).
&The proof that Py, = Hj, + r2Pj_2 needs to be added . O

By induction one proves the following corollary.

Corollary 26.
Pop = Hop ® r*Hap—o ® riHap_4 @ .. .72 H,,

Pok1 = Horr1 @ r*Hop—1 @ r'Hop_3 @ ... 77",
Corollary 27. If P € Py, then Plgn is a sum of spherical harmonics of degree < k.

Corollary 28.
(k+n—2)!

dimH, = 2k +n—1) W= 1)

Proof. Since Hj and Hj are isomorphic, dimHj; = dimH. And from Proposition 25,
dimHk = dimPk — dim'Pk,Q.

It only remains to compute the dimension of Px. In order to do that note that the
monomials % with |a| = k are a basis for Py. Therefore, dim Py, is the number of ways
in which you can form an n+ 1-tuple @ = (v, ..., 1) such that ag +- -+ apq1 = k.
Imagine you want to know in how many way you can arrange k black balls into n + 1
subsets, and that you separate any two subsets using n white balls.

a1 (05)) ag Q4 as
! — — /

® 6 6 O ¢ O ¢ 6 6 O 0 0 O o
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It follows that the dimension of Py, is the number of ways in which you can choose from
a total of n + k black balls a subset of n balls and paint them in white. That is,

dim Py, = ("Zk)

Theorem 29. ~
L*(S") = €P Hi.
k=1
Proof. Taking r = 1 in the above corollary we get that
Srm1He = S Hilsm = S Prlsn-

Since Py - Py C Prye we get that @72 Pr|s» is a subalgebra of C°°(S™). Note that
it separates points. Indeed, if y,z € S™ are different points, y = (y1,...,Yn+1) and

x = (21,...,2n41), then there must exist a coordinate for which y; # z;. Therefore we
may choose P(x1,...,Tpy1) := 2; € Py which makes P(y) # P(z). By Stone Weirstrass
Theorem we obtain that &2 | Hy, is dense in L?(S™). O

We proved that the eigenfunctions of the Laplacian on the sphere S” C R"*! are restric-
tions of harmonic polynomials to the sphere. The eigenspaces are Hy, with corresponding

eigenvalues k(k + n — 1) of multiplicities (2k +n — 1)%

The 2-sphere.
The eigenvalues are k(k 4 1) with multiplicities 2k 4+ 1 for & € N.
Let us parametrize S? with spherical coordinates

(0,¢) — (sinf cos ¢, sinf sing, cosb).

Let us first find the first degree spherical harmonics. First observe that P; = span{x,y, z}
and dim P; = (2451) = 3. Also H; = span{z, y, z} and therefore

Hy = span{sin 6 cos ¢, sin 6 sin ¢, cos 6}
with corresponding eigenvalue 2 of multiplicity 3.

We now find the second degree spherical harmonics. First observe that the second degree
harmonic polynomials are P = span{x?,y?, 22, zy, z2,y2} and dim Py = (252) = 6.
Also Hy = span{z? — 22, 22 — %, vy, 22,y2} and therefore

Hy, = span{cos2 0 — sin? 0 cos® ¢, cos®H — sin? O sin? ¢,

sin? @ cos ¢ sin ¢, sin @ cos ¢ cos 0, sin 0 sin ¢ cos 0}

with corresponding eigenvalue 6 of multiplicity 5.
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To find a basis of Hy, for general k, let us try to solve Laplace’s equation by separation
of variables. Suppose Y (6, ¢) = Pr(0)Px(¢) solves

Ay Vi = k(k +1)Yj.

Then, by the formula for the Laplacian (4.3) in spherical coordinates we have

1 0 (. 0 1 02

which reduces our problem to the following two systems:

RO

Py (9) ’
sinf d
—(sind PL(0)) = m?
Be(o) ag SO Be(@)) = m”,
where m is a priori any complex number. Then ®;(¢) = ¢™?, and, since @y is 27-
periodic m must be an integer. Changing variables 6 — t = cosf we may rewrite the

second equation as

k(k+1)sin®0 +

2
(1= ) B = 2tP + (k(k+1) - 1”%2)13,6 —0
which is known as the generalized Legendre’s equation and has 2k+1 = dim Hy, solutions
known as the associated Legendre polynomials P]*(t) where —k < m < k. It then
follows that
Hy =span{Y)" : —k <m <k}

where '

V™6, ¢) = ™® P (cos6).

If we restrict ourselves to real eigenfunctions we then have that &lndices reverted be-
cause of the picture!de
H, = span{yﬁb : —k<m<k}

where
V2O cos(me) Pi(cos 6) if m >0,
yﬁl(ﬂ, o) = Clg P,?(cos 0) ifm=0,
V2CI sin(—me) P, ™ (cos ) if m <0,

where C}" are so that [|y*|[2 =1

m | 2k+1)(k—|m|)!
CK '_\/ dm(k + |m[)!

Zonal harmonics. When m = 0 the eigenfunctions yg are known as zonal harmonics.
They are invariant under rotations that fix the south and north poles.

yp(0, ¢) = Cy, P (cos 0).
Highest weight harmonics. This is the case k£ = m. Here,

yi(0,0) = V2 CF cos(kg) PF(cos8) = V2CF (—1)F(2k — 1)!! cos(k¢) sin(6)".
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Spherical

1
0 = —_
Y0 0,¢) = \/ yp

0
5
g,
5

1
an’
y710,¢) = \/g sin¢sin6 %x,
1 N6, = \/gcose %z,
y10,0) = \/gcosqbsine %y,
¥,20,¢) = \/gsin(,bcompsinze gxy,
y2—1(0,¢>) = \/gsinqbsine cosf Eyz,
1 %26,¢)= i(3cos20—1) i(zszz— 1,
167 167
¥30,¢) = \/gcosqﬁsinecose ;—sz,
¥50,¢) = 116—57[ (cos? ¢p —sin® ) sin” O 312—57[ (x2=2).
¥
C
nt n "

Figure B.1: Plots of the real-valued spherical harmonic basis functions. Green indicates positive values and
red indicates negative values.
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5.5 Klein Bottle (Exercise)

For @ > 0 and b > 0 consider the discrete lattice I',; generated by {aei,bea} where
e1 = (1,0) and ex = (0,1). We write I'y; for the group generated by the translations
induced by I';; and the transformation

a:R? 5 R? a(w,y):(x—i-g,b—y).
1. Show that fa,b is a discrete group of isometries that acts properly and freely on
R2.

2. By the previous part we may endow the Klein bottle K,; := RQ/FM with a
canonical Riemannian structure gr, ,. Find the eigenvalues of the Laplacian on

(KaJ)? gKa,b)'

3. Deduce that the flat torus T = R"/Z" and K, are never isospectral (that is, they
cannot have the same eigenvalues).

5.6 Projective space (Exercise)
Consider the sphere S™ endowed with the round metric ggn. Consider the isometry
a:S"— 8" alr) = -z

and the group of isometries I' = {Id, a}. The projective space is defined as the quo-
tient P"(R) := S™/I.

The projective space inherites a canonical Riemanian metric gpn(g). Find the eigenvalues
and eigenfunctions of (P"(R), gpn(w))-



CHAPTER 6

Heat Operator

6.1 Sobolev Spaces

We start this chapter reviewing some basics on the Fourier transform. For ¢ € C§°(R")
its Fourier transform is

60 = [ o)
where we write (throughout this section)

1

We need some notation. For ¢, € L?(R") their convolution is

¢ () = . d(z —y)Y(y)dy.
Also, given an n-tuple a = (v, ..., ) € Z} we write
D = (—q)llger . 9o,
The following collection of results is well known:
Lemma 30.

e The Fourier transform is an isometry on C$C(R™) in the L?-norm, and so it
extends to an isometry of L?(R™).

o (pxU)y=¢ .
o ($Yy=0x1.
o $(z) = [pn €TE(E) dE.
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~

o (D¢)(€) = £ ().
o (z0)(€) = D*(¢).

For  C R" open with Q compact, ¢ € C§°(Q2) and s =0,1,2,... set
1
ol = (3 1D°0l3)*.
la|<s

If ||p|lz, < oo we say the ¢ belongs to the s- Sobolev Space H;(2). Note that Hyp(2) =
L?(9). The Sobolev s-norm can be generalized for s € R. In order to do this note that
(setting ¢ = 0 on Q°)

o7, = > 1D%0l3 = D II(D6N3

|| <s || <s
= €@ Pde = | 1BOP(D_ €7 de.
‘%5 /R;n /Rn |(§§:s

Since both 7, <, 1€ and (1 + [£]?)® are polynomials on ¢ of the same degree, then
there exist two positive constants C7, Cy for which

Cullgllz, < /Rn [GE)P(L + [€%)°de < Call |,

Which means that for s = 0,1,2,... the norms |||z, and ( [g. [(- J(€)[2(1+(¢]?)*d€) 12

are equivalent. Since the second norm is meaningful for any s € R, we define the
Sobolev s-norm of a function ¢ € C§°(Q2) as

ol = ([ 1P+ ms)%

where ¢ is defined to vanish on Q¢ (¢(z) = 0 if = ¢ Q). The completion of C§°(Q2) with
respect to the Sobolev s-norm is called the Sobolev s-space and is denoted by H(€2).
Note that for 0 < ¢t < s one has continuous inclusions

H(Q) C Hy () C Hy(Q) = L*(9).
It is clear that C*(Q) C H¥(Q). This property has a partial converse:

Theorem 31 (Sobolev embedding). If ¢ € Hy(Q2), then for all s < k — § we have
feCs(Q).

Proof. Fix k and s such that k& > s 4 5. We first show that the map D : H(Q2) —
Hj,_|o(£2) is continuous as long as [a| < s. Indeed, for ¢ € Hy(Q),

D01, = [ I(D"0P(1 -+ (€ lag
= [ lede R+ gy las
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Since both (1 + |€]?)* and [€2[2(1 + |€]?)*~ 1ol are polynomials of degree 2k there exists
C > 0 making

D0l .oy < CllO| .-

We now want to show that if D*¢ € Hy_j,(Q2) then D¢ € C°(Q) as long as |a| <'s.
If we prove this we would then have that ¢ € C*(2) as desired. Let x € €,

Do)l =| [ e (0roneras

/ i€ (1+ |€|2)—(k—|a\)/2(1 + |f‘2)(k_‘a|)/2 (DaQS)A(&)dg‘

< (/Rn(l + \§|2)(k°‘|)d§> - (/ (DY(E)2(1 + ]5‘2)ka|d§>1/2

and since k — ||a] > §, there exists some C' > 0 for which
|D%¢(x)| < ClIDYP| 1, _ - (6.1)

Since D¢ € Hj_|4|(2), there exists a sequence {t;}; C C§°(f2) such that v; —
D%p in Hj_ (). Equation (6.1) implies that ¢; — D“¢ uniformly and so D% is
continuous. O

Theorem 32 (Compactness). If s < t, then the inclusion Hy(2) C Hs(Q) is compact.

Proof. Saying that the inclusion is compact means that any bounded sequence {¢;}; C
H;(2) has a subsequence {¢j, }; which is convergent in Hy(£2). So let us start fixing
the sequence {¢;}; C H(2). The argument is as follows. We first show that if {¢;};

is bounded, ||¢;]|zr, < 1, then {¢;}; and {8@({5;‘}]‘ are uniformly bounded on compact

subsets of R"™. By Arzela-Ascoli’s Theorem this implies that there is a subsequence
{éjk}k that converges uniformly on compact subsets of R™. Using this, we then prove
that {¢;, }x is a Cauchy sequence in H(2). Since by definition H,(2) is complete, we
get that {¢;, }x is convergent in H,(12).

Let £ € R™ and let x € C§°(R™) be so that x(z) =1 for all z € Q.

0] = (¢ - 6;7€)]

— %% 8;(0)
[ 6= misman
1/2 R 1/2
< ( | e-npra+ !nl2)_tdn> ( RIS |77|2)td77>
Rn Rn

= £(6)165 1

where f(£) is a continuous function on R”. Since ||¢;z, < 1 this shows that {¢;}; is
uniformly bounded on compact subsets of R”. Same argument works for {0¢,¢;};. Let
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{®,. }x be the subsequence given by Arzela-Ascoli’s Theorem. It only remains to show
that {¢;, }i is a Cauchy sequence in Hy(Q2). Fix € > 0. For r > 0,

164 — b, = [ 1606 = GiOP (L + ey
Rn
— / 1650 (6) — by, ()21 + () de + / 1350 (6) — by, ()21 + () de
[&|1<r [&]>r (6 2)

The idea is to pick r sufficiently large so that the second term on the RHS of (6.2) is
smaller than /2. Since {{ € R™ : |{| < r} is compact and {¢;, }, converges uniformly
on compact subsets we can make the first therm on the RHS of (6.2) be smaller than ¢/2.

To choose r simply note that if |{] > r then
(LHEP) = (L) (A +[E7) > (1 +[€7) (1 + 7).

Therefore,

/|£|> |¢A)J’€(€) - g?’je(f)|2(1 +[€?)5de

1
R
<1
T (142t
<1
T (142t

/|§|> |€£Jk(§) - &jz(‘f”z(l + |f|2)td§

H¢Jk - ¢je”%{t

and so we may pick r as large as we want to make 0

Sobolev spaces on compact manifolds. We now extend the definition of the Sobolev
spaces to a compact Riemannian manifolds (M, g). Let {u; : Uy C R® — M} be an
atlas of coordinate maps on M with U; compact, and write {p; : M — [0,1]} for a

partition of unity associated to {U;};. We define Hy(M) as the completion of C5°(M)
with respect to the norm

10l a2, == (ZHPMOWH%&) :

It is not difficult to show that this definition is invariant under changes of coordinate
charts and partitions of unity. All the results in this section extend to Sobolev spaces
on compact manifolds in a natural manner.

6.2 Heat propagator

Throughout this section we assume that (M, g) is a compact Riemannian manifold
without boundary. The heat operator L := A + 9; acts on functions in C(M X
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(0,4+00)) that are C? on M and C! on (0,00). The Heat equation is given by

{Lu(m,t) = F(z,t) (2,t) € M x (0, +00)
u(z,0) = f(z) reM

The homogeneous Heat equation is

{Lu(x,t) =0 (x,t) € M x (0,+00)
u(z,0) = f(z) zeM

Lemma 33. If u(x,t) solves the homogeneous heat equation, then the function t —
lu(-,t)||r2 is decreasing with t.

Proof. The proof reduces to show that the t-derivative of the map is negative:
d
GOl =2 [ du(at) ua ey (a)

=2 /M Agu(aj, t) u($a t)Wg(.fL')

= —2|[Vgu(-, )|
<0.

Lemma 34. The solution to the inhomogenous problem is unique.

Proof. Suppose that both u; and wus are solutions to the homogeneous problem. Then
U = up — Uy solves

Lu(z,t) =0 (x,t) € M x (0,+00)

u(z,0)=0 =zeM '
The proof follows from the fact that [, u(z,t)?dz is a decreasing function of ¢ while
u(z,0) =0 for x € M. It follows that u(z,0) =0 for all x € M. O

Proposition 35 (Duhamel’s principle). Let u,v : M x (0,+00) — R be C? on M and
C' on (0,4+00). Then, for anyt >0 and «, B such that [, B8] C (0,t), we have

/ u(y,t — a)o(y, a) — u(y, — B)o(y, B) wyly) =
M

B
— / / Lu(y,t — s)v(y,s) —u(y,t — s) Lu(y, s) wg(y)ds.
« M
Proof.

Lu(y,t — s)v(y,s) —ul(y,t — s) Lu(y, s) =
= Agu(y,t — s)v(y,s) — Ag(y,t — s)Lv(y, s) + Osu(y, t — s)v(y, s) — u(y,t — 5)dsv(y, s)
= Agu(ya t— S)U(?% S) - Ag(ya t— S)L’U(y, S) - as(u(ya t— S)U(y, S))

The result follows from integrating first with respect to = (this makes the first two terms
cancel out) and then with respect to ¢. O
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We say that a fundamental solution of the heat equation is a continuous function
p: M x M x (0,00) — R which is C? with respect to z, C! with respect to ¢t and such
that

Lyp=0 and hm p( 1) = 0y.

Proposition 36. The fundamental solution to the heat equation on M is unique and
symmetric in the two space variables.

Proof. Let p; and py be two fundamental solutions. Fix x,z € M. In Duhamel’s
principle set u(y,t) = p1(z,y,t) and v(y,t) = p2(2,y,t). Using that Lyp; = Lyps =0
we get

pi(w,y,t — a)p2(2,y,a) — pi1(x,y,t — B)p2(2,y, B) wy(y) = 0.
Let « = 0 and 8 — t. We then get
pi(z, z,t) = pa(z, 2, 1).

In particular, choosing p;1 = ps we get that the fundamental solution is symmetric.
Since the fundamental solution is symmetric we deduce that

pi(z, z,t) = pa(z,2,t) = pa(z, 2, 1)
and so the fundamental solution is unique. O

Proposition 37. Let f € C(M) and F € C(M x (0,+00)). Then

u(e,t) = /Mp@:,y,) ) du(y / / Pz, . 5)F(y,t — )dw,(y)

solves the problem

Lu=F,
Proof. Fix x € M. Apply Duhamel’s principle to v and v(y,t) = p(z,y,t) and get
/Mu(y,t—a)p(x,y,a) —U(y,t—,ﬁ)p(l‘ y’ / / y7t_s (l’ Y,s )d
Let a = 0 and 5 — t. O

Remark 38. We stop to observe that [, p(z,y,t) dwy(y) = 1 Vo e M,t € (0,00).
Lu = F.

u(-,0) = f.

Remark 39. For any ¢,s > 0 we get

This is because u(x,t) = 1 solves {

p(x,2,t +5) = /M p(x,y, )p(y, 2, 8)wy (y).

u('v O) = p('a Y, t)
Remark 40. All these results can be proved for compact manifolds with boundary using
an adaptation of Duhamel’s principle. One should use that both in the Dirichlet and
Neumann boundary conditions setting one has |, op PO do = 0 for all ¢,9 € C*°(M)
satisfying the appropriate boundary conditions.

Lu=0
This is because for fixed y € M we have u(z, s) = p(z,y, s+t) solves { Y
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6.3 Basis of eigenfunctions on compact manifolds

Given t > 0, let us define the heat propagator e=*®s : L2(M) — L*(M) by

0 f () = /M Py, 1) F(y) wy ().

Lemma 41.

1. e~ g o =50y — o~ (t+s)Ay
2. e B s self-adjoint and positive.
3. e By s q compact operator.

Proof.

1. Follows from the fact that p(z, z,t +s) = [}, p(x, y,t)p(y, 2, 5)wy (y).
2. For f,g € L*(M),

(e f, g)

N————
<
~
—~
~—

/pxy, () wg(y)
M

/ Dy 2, 1) (1)9(2) g (@) wyly)
M

I
s\s\:\

( P03 (o)) F0) ()

—tA

< §

This shows that e *2s is self-adjoint. To show that it’s positive it suffices to notice

that (e""a f, f) = e~ 2% f||2 > 0.

3. The operator e **9 : L?(M) — Hy(M) is continuous and the inclusion Hy(M) C
L*(M) is compact. Their composition e **s : L*(M) — L?*(M) is therefore
compact. To see that e *?s : L2(M) — H;(M) is continuous simply note that
if {f;}; € L*(M) converges to 0 in L? then [e7*®s f;||;2 —; 0 and similarly
|0z, fjll 12 —; 0. The last two statements can be shown by splitting M in

coordinate charts and pasting them by partition of unity.

Lemma 42. Ast — 0 we have e"*As f — f in L*(M).
Proof.

Hf P, 1) f ()

/ 'f Pl 1) (3)dy ()

_ / ' / p(@,y,)(f(x) — F()) wyly)

2

wg(z)

// (@, y,t) |f (@) = F(y)]? wy(y)wy ().
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Since p(z,y,t) is uniformly bounded and p(z,y,t)|f(z) — f(y)|> — 0 as t — 0, we
conclude our result from the Dominated convergence theorem. O

Theorem 43. For any f € L*(M) the function e=®9 f converges uniformly ast — oo to
a harmonic function. In particular, it converges to a constant function when OM = ().

Proof. The strategy is to show first that e=*?s f converges in L?(M). Then show that

e tAs f converges uniformly to a continuos function f Lastly, prove that e *®9 f f
If we do this, then 0 = L(e 29 f) = Lf = Ay f. This would show that f is harmonic
and since M is compact we must have that f is the constant function.

We know that He‘mg fll 12 is a decreasing function of ¢, so it must converge to something,.
Now,

e~ f — = Bo f|[2 = [l A |12 4 flemBe f|12 — 2flem F A 12

This shows that |[e *2s f — e 52 f|| = 0 as s,t — 00.

Let x € M.

(e (TH020 f — =(TH980 ) () 2 = =T B0 (=030 f — e=20 f) ()2
2

/ P, 5, T) (e f — €= F) () (3)
M

< constant - [|e "2 f — G_SAngiz-

We now show that e %2 f = f:

2

(=)D f —tAgf>|2<x>=/p<w U D)2 — F)(y)way)
M

< constant - He_SAgf - f“%?

O

Theorem 44 (Sturm-Liouville decomposition). For M compact, there exists a complete
orthonormal basis {0, 1,...} of L*(M) consisting of eigenfunctions of A, with ¢,
having eigenvalue \; satisfying

)\0§>\1§/\2§... — Q.

For every j we have p; € C*(M) and

p(zyt) =Y e Moi(x)p;i(y).

=0

Proof. We recall that so far we haven’t proved the existence of the fundamental solution
p. Once we do so we will show that p is C*° in the spatial variables. The proof that
follows will yield that the smoothness of ¢; is that of p in the spatial variables and so
it will follow that ¢; € C*°(M).
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Our first claim is that e 7?49 = ( Ag)t for t > 0. If k € Z then e F89 = (e=%9)F. Fix

1
p,q € Z. Since (eiﬂAg)q = ¢ %9, then e —yh = (e A9) We then need to generalize
this for ¢t € R. Note that

le™ B0 — (7 Ba)!|| < [le™ — T a R0 || 4 |leT R0 — (e7Da)a || +[|(e7 D) — (e29)1|.
=0

Observe that

I(e™29)

Q3

— (e729)| = sup ’ﬂ% — B =0 as Lt
Bespec(e™29) q

On the other hand,

(e85 — e 5By p2, < / / 1p(,9,1) — p(@, 5, /)1 £ () Py () ()

also converges to 0 by dominated convergence.

Since e~ is a compact self-adjoint operator we know that it has eigenvalues 3y > 1 >

- > Br — 0 as n — oo with respective eigenfunctions g, ¢1,... forming a complete
orthonormal basis of L?(M). Since e~*As = (e=29), we must have e A9y = Beo.
From the fact that u(z,t) = [, p(z,y,t)0(y)wy(y) is a solution to the homogeneous

equation
Lu=0
u(‘? 0) = ¥0

and that [,, u(z,t)?wy(z) decreases with ¢ we have o < 1.

Set A\g := —In Sk. Then
—tA,

—tA
e Ty =e Pk-

Since e~*9¢py, is as solution of the heat equation for all k we get

0= L(e ogpy) = e (Apy, — Argor),

which implies that o is an eigenfunction of the Laplacian with eigenvalue A.
Since p(z,y,t) = 32 Zo(p(x, 1), vr)er(y), and

—Ait

<p(x7‘7t)’§0k> =e ggok( ) € (,Ok(l‘)

we finally obtain that

oo
ple,y.t) = e Mop(a)en(y).
k=0

Since [ M cpiwg =1 for all £ we conclude the following

Corollary 45. For everyt > 0

o

/M p(x,x,t)wy(z) = Z e M,

k=0
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6.4 Fundamental solution in R"

Eventhough we have been working on compact manifolds throughout this chapter, we
digress briefly to inspire the form of the fundamental solution on compact manifolds.
Suppose p(zx,y,t) is a fundamental solution for Heat equation in R™. That is, p :
R™ x R™ x (0, +00) is continuous, C? on R", C! on (0, +00)

Aanp + 8tp = Oa
p(z,y,t) = 0.(y) t—0.

Then u(z,t) = [z p(2,y,t) f(y)dy solves the homogeneous heat equation

{(AW +)u =0
u(‘v 0) =f

“w o

where f is a continuous and bounded function on R”. Let us use the notation ” for

the Fourier tranform with respect to the spatial variables:

lylPa(y,t) = yiay,t) = (O D2 uj(y,t)
j=1 J=1

n
= (=02 u)(y.t) = (D) (3, 1)
j=1
= —dpu(y,t) = —yi(y,t).
It follows that there exists a function A : R™ — R such that

iy, t) = h(y)e V1"
so therefore

h(y) = u(y,0) = f(y).
We deduce that

o~

a(y, 6) = fly)e WP = F(y)e IVBIR/2 — f(y). ((zt)—%e—”"""/‘“) (v)

and so

(1) = (£ [0 3 1P])

It follows that formally

_n 12 /4¢ 1 ly—xlI2 /4t
uv.) = F [0 8N ) = g | p@en e

We then should have
o~ lly—=ll?/4t

TR p—
pr,y, _(47rt)%
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Proposition 46. The function p : R™ x R™ x (0,400) — [0, +00)

_ _ 2
o~ ly—al?/at

p(x,y,t) = @)

s a fundamental solution for the heat equation on R™.

Proof. 1t is easy to check that Ag,.p + Op = 0. Let us prove that p(z,y,t) —
9z(y) t — 0. We first need to show that [z, p(z,y,t)dy = 1 for all (z,t) €
R™ x (0,400). Indeed,

/ P,y t)dy = / / pla, x4 ré, )\ dedr
n 0 Sn—1(z)
> 1 _2 n—1
= Qe w T dEdr
Sn— 1 2
/ / e "L (44) " (4¢)2dedr
Sn 1
— / / =" gn=Lgeds
5 Sn 1

o 2
- vl g
T2 Rn
=1.

M\:

Let f: R™ — R be a bounded and continuous function.
@)= [ po 0100108 -
[ ptenr@) - 1)

S/ p(x,y, )| f(z) — f(y)ldy + / p(z,y,0)(f(x) — f(y))dy
2vin(@) R™\B, /7 ()

< s @@l [ 6 0@~ S der

yEBQ\/{R(w)

We now need to choose R sufficiently large so that the second term is as small as we
wish. Once R is fixed the first term can be chosen to be small since ¢ — 0.

L[ peat i@ - s o der =
2VtR J Sn—1( :v)
S/ / P, + 2Vts, 1)2|| flloo (2VEs)" 12/t déds
R JSn1(z)

_ / / =510 [ odéds
R JSn—1(z)

— 2v0l(S™ V) oo / e 5114,
R
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6.5 Existence of the fundamental solution on compact man-
ifolds

Let (M, g) be a compact manifold and choose € > 0 such that the exponential map
exp, is a well defined diffeomorphism on B.(0) C T,M. We then identify a point
y € B(z) := exp,(B:(0)) with its polar coordinates (r,€), y = exp,(r§) where r € (0, €)
and ¢ € S"71(0) C T,M. By performing a computation very similar to the one we
carried when we expressed the Laplacian on R” in terms of that of a radial operator
and the Laplacian of S~ !, once can show that using the geodesic polar coordinates

y = (r,&) one gets
O (v/det g0y)
+Ag 0
Vdet g st @)

where ggn-1(;) is the metric induced on the geodesic sphere Sr=1(x) € M of radius
r € (0,e). Remember that the fundamental solution on R™ has the form (z,y,t) —
(4mt)—/ 2elle=vl*/4t Tngpired on this formula we wish to find the fundamental solution
on M, but in order to do this we need to work with the Riemannian distance function
on M. Fory = (r,§) € B.(x) we set dg(x,y) := r which is the length of the radial
geodesic joining  and y. Consider the set V. := {(z,y) € M : y € B:(z), dy(z,y) < €}
and the function

Ay =07 —

G:V: x(0,400) = R

1 )?
G(z,y,t) = e eda(z=y)"/4t,

Unfortunately, not only G is not defined on all M but also one may check that (A, +
0¢)G # 0. First, note that in geodesic polar coordinates y = (1,£) at © € M one has

1 2
G(z,y,t) = ————¢" /%
and so (writing Ay for the Laplacian on the spatial variable y)

or(V/det g0, G) Orv/det g
AG = -02G - T = = 902G - 0,G T —".
g " Vdet g " Vdet g
Defining the function D : B.(xz) — R
det
D(y) = Y 9(y)

Tn—l

where g(y) is thought of as a matrix in the y = (r,§) geodesic polar coordinates at z
we get

D + r
n r2 r 0,D
=(5- )+ p 6

A,G = —82G — arG(a’“D n

On the other hand,
2

8,G = —(% . i?)c;.
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This clearly shows that (A, + 0;)G # 0.

We then try to modify G and we do so by considering for each k € N the function
Sk Ve x (0,400) = R

Sk($, yvt) = G(.Z‘, yat) (UO(xay) + tU1($,y) Tt tkUk(ﬂf,y)

and we hope we can choose the functions u; € V. that make (A, + 0;)S; = 0. Spoilers
alert: we won’t be able to get the 0, but we will be able to get an expression that decays
to zero like t#7"/2 as t — 0. Let us compute (A, + 0;)S:

AySk = AyGlug + - + tPug) + G(Aguo + - - - + tF A ug) — 2(V,G, Vy(ug + - - - + tFug)),.

Note that since G is not a function of the angular variables £, then V,G involves no
O¢; terms. Since (0,0, )g = 0 and (0r, 0r)y = 1 we get (V,G,Vy(up + -+ + thug)), =
0,G(Opug + - - - + tFopuy) = — 57 (Orug + - - + tk9,uy,)G. Tt then follows that

8,D
(Ay+8)Sk =G - (u1 T T %T(UO Foe o tRuy) (6.3)
+ ;(8ru0 4o tROug) + Agug + -+ t’“Aguk). (6.4)

Although we are not able to build the functions w; so that (Ag + 0;)S, = 0 we will be
able to build them so that

(Ay +9)Sk =G - t* - Ajuy, (6.5)

which makes (A, + 8;)S}, vanish to order t*~"/2, Rearranging the terms in (6.3) one
gets the following system of equations that ensure (6.5). We get

r OpD

ropug + 5D

up =0, (6.6)
-D .
r@ruj—i—g(% —i—j)uj—l—Aguj_l:O, j=1,...,k. (6.7)

Equation (6.6) gives up = fD~1/2 where f is a function of the angular variables £&. We
wish that ug(z,y) be defined at = = y, or equivalently » = 0. This means that f must
be constant and we set it to be 1. Therefore,

uo(z,y) = D2 (y).

Since we chose f =1 we get
uo(x,z) = 1.

We now need to prove the existence of the other u;s. Instead of solving (6.7) we note
that v; = fr~ D~1/2 with f = f(£) solves the simpler problem

r /0D
ropv; + *( D

9 +j)’Uj:O.
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One can then check that ‘
uj:=hr™’ D1/?

with h = h(r) solves (6.7) as long as
(3rh == —D1/2 Ag’LLj,1 ’r‘j_l.

Let 7 be the geodesic on M joining  and y. Since Aju;_1(-,y) is a functions of r along
~v, we may find h by integration in r

h(r) = /0 D'2(y(s)) Aguj-1(1(s),y) '~ ds.

Finally,

Uj (x,y) = —(d(x, y))_jD—1/2(y) /07" DI/Q(V(S))Angfﬂ’}/(S), ) S-1gs.

It is easy to see that by induction u; € C*(V,).
Let us record what we proved so far:

Proposition 47. The family of functions ux, € C°(V,) defined by the recursion formu-
las

ug(z,y) = D3 (y)

u(z,y) = —(d(z, ) D V2(y) /0 " DY2(y()) Agujr (1(5), y) sF s

satisfies

LySk:G~tk-Aguk forallk=0,1,...
where Ly = Agy + 0p. In particular, uo(z,z) = 1 and w1 (z,z) = ; Ry(x).
We now wish to extend the definition of Sy to all of M. We then introduce a bump
function a € C*°(M x M, [0,1]) with a = 0 on V¢ and @ = 1 on V5. We may now
define
Hyi: M x M x (0,+00) - R

Hy(x,y,t) := a(z,y)Sk(z, y, t).

Lemma 48. For k > m/2 the function Hy € C*°(M x M x (0,+00)) satisfies

a) LyHy, € C*(M x M x [0,4+00)) for0<{<k—n/2.
b) For everyx € M, Hi(z,y,t) — 6,(y) ast— 0 for ally € M.

Proof.

a) We prove this statement for ¢ = 0. The problem with establishing the continuity
of Hj is to show we have it at ¢ = 0. By the definition of the bump function we have
Hp =0 on V¢ x (0,400). So we may extend the definition of Hy to V¢ x [0, 400) to be
0 at ¢ =0. Since « =1 on V5 and

1 2
— = ri/atk
L,Hy, (47rt)”/2€ t" Agup, -0 ast—0,
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we may also extend Hy on V, /5 x [0, 4+00) by setting it to be 0 at ¢t = 0. It only remains
to deal with the domain Ve N V¢, x [0, +00). We then have

Lka =« - (Ag + at)Sk + Aga Sk — 2<Vga> ngk>g
1

— —7"2/4t t

where (x,y,t) € C°(M x M x (0,4+0c0)) has at most a pole of order % at ¢ = 0 coming
from V5. Since on Ve N V7, X [0,400) we have r > £/2, we may also extend Hy to
be 0 at t = 0.

b) Let f € C(M). Since Hy = aG (ug + ... t*uy), we are interested in understanding
the behavior of the integral

/ (@, y) G, y, tyus (2, 1) £ () dvg ()
M

- / G,y by (. y) () dvg () + / (2, 9)G @y, ) (2, y) £ () doy (1)
B, 3(x) BE/Q(x)

First note that since G(z,y,1t)
ast—0

= We_ﬂ/“ and r > £/2 on Bg/z(:c), we have that

| )Gy u (o) f0) duy) 0.
B§/2($)
We now deal with the other term

/ a(z,y)G(z,y, t)u;(x,y) f(y) dvg(y) =
B2 ()

L —d(ay)/at
= e g wi(z,y) f(y)dvg(y
[ . 9) T )y ()

:/TMWe||v||2/4tuj(x,expx(v))f(expx(v))J(v)dv

to get the last equality we passed to normal coordinates y — v with y = exp,(v), we

wrote J is the jacobian for the change of variables, and we set u; = 0 on B, 5(0)¢. Since

We*””‘w‘” = p(0,v,t) is the fundamental solution to the heat equation on R", we

get that ast — 0
[ e G ) F) o) = o))
e/2\T
Using that ug(z,z) =1 we get as t — 0
[ a6y 0u@ ) duly) > 1)
BE/Q(:C)
For any other values of j we get as ¢t — 0

/ a(z,y)G(z,y, )t ui(z,y) f(y) dvg(y) — 0.
B, 2(x)
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Before we find the actual expression for the fundamental solution it is convenient to
understand how the Heat operator acts on convolutions. Let us define the convolution
operation for functions F, H € C°(M x M x [0,00)) by

FoH (2,9,1) // (2, 2, ) H (2,5, — 80y (2)ds.

We first note that if F € CO(M x M x [0,00)), then
F s Hy € CYM x M x (0,00)) for ¢ < k—n/2.

This is easy to check, the only problem being the discontinuity of Hy at t = 0. We now
explore how the heat operator L, = A, s T O acts on F'x Hy(x,y,t). First observe that

O(F * Hy)(z,y,t)

—at// (2,2, 8) Hy(2, st — 5wy (2)ds

~tin [ Pla,zs) it / / (2,2, 8) O Hi (2, s £ — )y (2)ds

— Fla,y.1) // (2, 2, 8) O Hi (2, £ — )y (2)ds,

and so

Ly(F % Hy)(z,y,t) = = F(z,y,t) //szsLHk(zy, s)wg(z)ds
= F(z,y,t) + F * (LyHy) (z,y,t).
We then look for fundamental solutions of the form
p= Hp — F x Hy
for some suitable choice of F'. Note that

Lyp = Ly(Hk — Fx Hk)
= Lka — Ly(F * Hk)
= LyHy — F — F % (L,Hy). (6.8)

This suggest that we consider, at least formally,

o0

Fi= S (17 (L, Hy)

j=1

Indeed, if we had that this series is convergent then from (6.8), for p = Hy — Fj, * H,

Lyp= LyHy — S (177 (L, H)T (i(—l)j“(Lwa*j) « (LyHy) =0.  (6.9)

J=1 Jj=1
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Lemma 49. For all { < k —n/2 the series Fy € C*(M x M x [0,4+00)). In addition,
for to > 0 there exists a constant C' = C(ty) such that

[F5 (5 Ol oo (e xary < Ccthn/? for all t € [0, o).

Proof. As we did in the proof of Lemma 48, using that V o and Agja have their supper
away from the diagonal in M x M, it is easy to get the existence of a constant C' = A(ty)
such that

ILyHi (-, )| oo (arsary < CHF2 for all t € [0, ).
In particular,

k—n/2
| Ly He || oo (arx M x[0,60])) < Cto "

We claim that for j =1,2,... and ¢ € [0, to]

C (Cty ™)~ voly(M)i~! P
(k—=n/2+j-1)... (k=5 +2)(k—5+1) '

I(Ly Hr)™ (-, 5 )| oo (arary <

Indeed, by induction, assuming that it is true for j — 1 we get for x,y € M (010
|(LyHy)™ (z,y,t)| <
//!Lm (a2, 5)|[Ly izt — )| g (2)ds
—n/2+3—2) (k—%+2)<k—g+1) 0 g

C (Cty %)~ voly (M)T =2

- VO tk**ﬂ 21s.
T k-n/24+5-2) ... (k—2+2)(k— 2+ 1) lg(M)/Ot d

Using (6.10) the ratio test shows that |(LyHy)*| L is convergent if k > n/2, and
so in particular j(—l)jH(LyH k)* converges to a continuous function.

The same kind of argument can be carried for the derivatives of L,H}. O
We have showed that Fj, is well defined. We then prove

Proposition 50. The function p = Hy — Fy. x Hy is a fundamental solution for the Heat
equation for all k >n/2+2 .

Proof. For k > n/2 + 2 we know that p € C*(M x M x (0,4+0c0)). Since Fy :=
> ()T Ly Hy)Y,

Lyp = Ly(Hk — F*Hk) = Lka — Ly(F*Hk> = Lka —F— Fx (Lka) = 0.

Let us now prove that p(z,y,t) — d.(y) as t — 0:

lim [ p(z,y,8) f(y) wy(y) = lim | (Hy(w,y,t) = Fi+ He(2,9,1)) f(y) ()
M M

— (o)~ lim [ Fox Hulo,0.0) £(5) (0
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By Lemma 49 we have || Fj.(+, -, )| oo (vrscar) < Ct+="/2 for all t € [0, t] and so the kernel
Ry, := t~(*="/2) Fy is uniformly bounded for (z,y,t) € M x M x [0,to]. Therefore, since
Hy(z,y,t) — 0z(y) as t — 0 we get that for k > n/2

lim/ Fi « Hi(z,y,t) f(y)wg(y) = limtk_"/2/ Ry« Hi(x,y,t) f(y)wg(y) = 0.
M M

t—0 t—0

O

Theorem 51. There exists € > 0 such that the fundamental solution for the heat equa-
tion has expansion

e—dg(:v,y)/4t ( k

p(z,y,t) = RO Z_;tjuj(xay) + O(tkﬂ)),

for all z,y € M with dg(z,y) < e/2. In addition, uo(z,xz) =1 and ui(z, z) = §Rye(z).

Proof. Since p = Hy, — Fy * Hy, is a fundamental solution for the heat equation for any
k > n/2+ 2 and such solution is unique, we have that the definition of p is independent
of k. Note also that Hy, — Fj, * H, € C*"/2(M x M x (0,400)) for all k > n/2 which
shows that p € C>*°(M x M x (0,400)).

Since ||Fi(-, - t)||zoouxany < CtF2 and Hy, € LY(M x M x (0,1)), we get ||F} =
Hy (-, t) || oo (amrxary < Dtk+1=1/2 for all ¢t < ¢, for some given small ty. The asymptotics

o—da(@y)/4t

follow from the definition of Hy = Wa(m, y) - (ug + -+ + thuy,). O

6.6 Fundamental solution in Riemannian coverings

Let (M ,9y;) be a Riemannian manifold and let I' be a discrete group acting properly
and freely on M. Write (M, gas) for the compact quotient manifold M = M /T. Since M
is compact, there exists a relatively compact open set D C M such that M = Uyer 7vD.
Also, the group I is finitely generated and so I' is a countable set.

The construction of the fundamental solution for the heat equation on a compact mani-
fold can also be carried on M with almost no modification. Since M = Uyer vD with D
relatively compact we can choose £ > 0 so that d(x,y) < € implies that y lies in a normal
coordinate neighborhood of . On the sets V. := {(z,y) € M x M : dg . (,y) < e} and
defines the parametrix Hy as in the previous section. Then

peC®(M x M x (0,400))

oo
5= Hy — (Z(—l)j“(Lka)*j) « Hy
j=1
is a fundamental solution for all & > n/2 + 2.
We need a few results before we explain the relation between the heat kernel on M and
that of M. First, by comparison with spaces of contant curvature one has the following
upper bound for the volume of geodesic balls (which we won’t prove):



6.6 FUNDAMENTAL SOLUTION IN RIEMANNIAN COVERINGS 79

Lemma 52. Let (M, gx7) be a Riemannian manifold whose all sectional curvatures are
bounded below by r. Then, for each x € M and r < inj(M), one has

voly - (Br()) < Cre2r

where Cy,Cy > 0 depend on k and dimM .
Lemma 53. Set Np :=#{ye€T': DN~yD # 0}. For each x,y € D and r > diam(D)

voly _ Boy ()

#{yeTl: B(x)Nyy #0} < Np UZ?I D)

951

Proof. For z,y € D suppose that there is a number ¢ of I'-translates of y inside B, gx)
Since r > diam D, then Ba,(x) contains ¢ translates of D. However, any point of M is
contained in at most Np translates of D. In consequence,

£ -voly (D)

Ny < voly . (Bar(7)).

O]

Write p : M x M x (0,400) — R for the fundamental solution of the heat equation
in (M,gy;) and p : M x M x (0,+00) — R for the fundamental solution of the heat

equation in (M, gys), where we continue to write M = M /T. We also write 7 : M — M
for the covering map.

Proposition 54. The fundamental solution for the heat equation on (M, g) is given by
p: M xMx(0,+00) = R

pl,y.t) = p(E .t

vyer

where T,y are such that w(Z) = x, w(g§) =y. The sum on the right hand side converges
uniformly on D x D X [tg, t1] with 0 <ty < t;.

Proof. We first show that the series converges:

pr N, t) < Ct™ n/QZ (@g) /4

vyel vyel

< Ct_n/2 i Z e_d"g’M (Z,vg) /4t

J=1 {v€T: v§€B;r(Z)\B(j—1)r ()}

N )22
< n/2 E 713 (B> —(3—1)*r?/4t
Ct VOlgM( ) OlgM( 2]7"(:6))6

< CClt_n/Q Z L€2Czjr6_(]’_1)2r2/4t

where to get the second inequality we decomposed M into rings whose boundary are
geodesic spheres centred a t = of radious jr with r > diam(D) and j = 1,2.... We
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then used that for Bj.(x)\B(j_1).(z) one has d,_ (z,y) > (j —1)r, and we also used the
previous Lemma to bound the number of I'-translates of y inside Bj,(x).

We now show that p is a fundamental solution: .

Fix (x,t) € M x (0,+00) and consider the function ¢ : M — R defined by ¢(9) :=
Zwer p(Z,vy,t) where T is so that 7Z = z. It is clearly invariant under the deck
transformation group I' and so there exists a unique function ¢ : M — R making
gom = ¢. Since ¢ is unique then p(x,y,t) = q(y). We then have, for g such that

T =Y,
AgM,yQ(y) = Aqu(ﬂ-g) = 7T*Aqu(g>
= Ay 7 a(y) = Ay, a(9)
= EAQM,QP m,'yy, )
yel’

Since (Ag.y + 9)p = 0, it follows that Lyq(y) = 0. To see that p(z,y,t) — d.(y),
simply note that

pla,y,t) = > x(v).

vel’
It only remains to note that

1 Fy: 2=~y 1 —
Z&z(w}):{ 7T i and only if Zéi(q/gj):{ =Y

e 0 else e 0 else

and 50 > 0z(79) = 0 (y). -

Flat Torus. From the expression for the fundamental solution of the heat equation
on R" it follows that the fundamental solution for the heat equation on the flat torus
T =R"/T is given by

— Z o iy —l12 /4t

(4mt)=

where Z,y are such that 7(z) = x, 7(g) = y for the corresponding covering map

T (Rn,an) — (R”/F,an/I‘)

Hyperbolic surfaces. Let (M, g) be a hyperbolic compact surface which is realized as
the quotient H/I" where H is the hyperbolic plane and I is a discrete subgroup acting
properly and freely. To get the fundamental solution on M = H/T" we just need to know
that of H. We won’t prove the next result but you may find it in the book by Buser.
Let dy : H x HH — R be the hyperbolic distance.

Proposition 55. The function p: H x H x (0, +00) — R given by

V2 ¢ > re= /4t
oty = Y2 [ N
pa(a,9,%) (4mt)3/2 de(zw) \/coshr—coshdH(z,w)

s a fundamental solution for the heat equation on H.
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We note that | |2
Z—w

hd =14+ —.
cosh dg (2, w) + 2Imz Imw

Negatively curved manifolds. If (M, g) is a compact manifold with negative sec-
tional curvature everywhere, then by Hadamard’s Theorem for every x € M the ex-
ponential map 7 := exp, : T, M — M is a covering map. Identifying T, M with R",
n = dim M, we may think of (M, g) as the quotient of R" by the deck transformation
group I' associated to m. The metric we use on R" is exactly 7*¢g. One may define the
Dirichlet domain

DDir = {g € Rn : dw*g(oyg) < dw*g(()?’ﬂ]) v7 € F\Id'}

We can add to Dp; a subset of dDp;, = Dpg\int(Dp;) to obtain a fundamental
domain D which has the property that R™ is the disjoint union of the vD as v ranges
in I'. One may then identify every point x € M with a unique point & € D and

P(M,g) (CC, Y, t) = ZP(R",W*g) (jv Y Ys t)
yer






CHAPTER [

Eigenvalues

Throughout this section we assume that M is compact. Further, if M has a boundary,

then we impose either Dirichlet or Neumann boundary conditions. Let g, ¢1,... be
an orthonormal basis of eigenfunctions of the Laplacian with respective eigenvalues
Ao < A1 < ..., satisfying the corresponding boundary conditions when needed.

7.1 Self-adjoint extension of the Laplacian

We know that the Laplacian Ay : C*°(M) — C*(M) is formally self-adjoint. The
purpose of this section is to prove that the Laplacian admits a self-adjoint extension to
H?%(M) in the sense that the domains of A, and Aj coincide. To show this, we first
introduce a characterization of H'(M) and H?(M). Before we do this, we note that
the Sobolev space H;(M) can be defined as the completion of C*°(M) with respect to
the inner product

(u, V), = (u,v)g + (Vgu, Vgv)g

for u,v € C°°(M). Similarly, H(M) is the completion of C*°(M) with respect to
<U’U>Hk = <U7U>Hk71 + <V§u, vlgcv>g'
Proposition 56.
oo
Hy(M) = {f e’ (M): Y M(f.p)? < oo}.
j=0

Proof. We give the proof of the characterization of Hi(M). The one for H(M) is anal-
ogous. Define A := {f € L*(M) : >0 il i) < oo}.
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We first prove that A C Hi(M). For f € A and k € N consider the smooth approxima-
tion in L?(M)

k
S’; = Zajgoj aj = (f, ).
§=0

Since S]J‘é e C>®(M),

k
IV(SF = SP122 = (S — S, Ay (S — Sy = D Nal.
J=l+1

It follows that ||SIJ§ - S}H%h = Z?:Hl(l + Aj)a? — 0 as [,k — oo. Since Hi(M) is

complete limy, S’}; =f€ Hi (M) and so AC H{(M).

Next we prove that A is closed in H; (M), that is Al — 4 Let f=>a505 € Al
Since C*°(M) is dense in Hy(M), there exists a sequence {f;}; C C°°(M) such that
fj — f in Hi(M). We may also consider the Fourier expansion for each f;. Say

fi= ];“;0 b](j)@k in L2(M). Since || fj — fHH% —; 0, we get || fj — fllzz2 —; 0. Therefore
152,09 — ap) g2 = 0, and this gives b —; ay, for all k.
In addition,

(Dgfir o)y = (fi Dgipr)g = M)
and so Agfj = >, /\kb](j)cpk. It follows that
1£ill7, = If5ll72 + IV filZa
= [I£ill72 + (£3, Agfidg

(14 M) (B2

I
~ |
=)

> 371+ M) (b1)2

o
o

for all ¢ € N. Since || fj — fllg, —; 0, we know || f;||m#, —; ||f|l#,- In particular, since
1£il12, = Sh_o(1+ A)(0Y)? for all € € N and b —; ay, for all k € N, we deduce
||f|ﬁq1 > Z,izo(l + Ap)a; for all £ € N. We then know that both > 72 (1 + A\g)aZ
and ) 7, ai converge, which yields the convergence of > 77 )\kai. We have proved

XH |z, c A

Having shown that A is closed in Hy (M), all that remains to be proved is that A+ = {0}
in Hy(M). Let f € Hi(M)n At. Since C®(M) is dense in H;(M) and A is closed
in Hy (M), there exists {f;}; C C®°(M) N AL such that ||f; — f|l#, —; 0, and so in
particular, || f; — f||f2 —; 0. By Green’s identities

(fir o) = (fir)g + (Vo fi, Vgor)g = (fis 0r)g + (fir Dgpr)g = (1 + M) {fj> or)g-

Since (fj, pr)m, = 0 for all k, it follows that (f, pr)g = 0 for all k and so f; = 0. This
shows that f = 0. O
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Note that if f = > a;p; € C*(M), then A~gf = >.;aAjp; and so [|Agflpz =
1 £ 1| tr5(ar)- This suggests we define an extension Ay : Ha(M) — L*(M) of the Laplacian.
For f € Hy(M), f = Zj a;pj, we set

Agf = Z aj)\jcpj.
7=0

Before we present the properties of the extension it is convenient to introduce a bilinear
form in H'(M). Consider the bilinear form on D, : C®°(M) x C*®(M) — R

Dg(fu h) = <v9f7 Vgh>g-
Given f,h € Hi(M), there exist sequences {f;};,{h;}; C C*°(M) such that f; —; f
and h; —; h in Hy(M). We then define the bilinear form on H;(M) x Hy(M) by
Dg(f, h) = lim Dg(fj, h])
j—oo

Theorem 57. The extension A, : Ho(M) — L*(M) of the Laplacian has the following
properties.

1. (Ayf,h)y = Dy(f,h) for all f € Hy(M) and h € Hy(M).
2. Ag is self-adjoint.

Proof.
1) Let f =3 ,a5p; € Ho(M) and h = 3, bjp; € Hi(M). If we set S’Jf = Z?:o a;p;
and SF = Z?:o bjp;, we get that {S’;}k and {SF}) are Cauchy sequences in Hy(M).
Then,

<Vgsjl§v ngE)Q = kh_)ngo<AgSI;’ Silf>g = Z Ajajbs-

Dy(f,h) = lim D(S}, Sy)
j=0

= lim
k—o0
In particular, by definition,

Bgfih)g = (D ahis, y bip), = Ajajbj = D(f,h).
§=0 =0 =0

2) From the previous part we know that Ag is formally self-adjoint. Indeed, if f,h €
HQ(M)a ~ ~

<Agfa h>g = Dg(fv h) = Dg(ha f)= <Agh7f>g-
Set

Dom(A) = {u € LA(M) : 3h, € L2(H) such that (f,h,)y = (Ayf,u)y Vf € HQ(M)}.

Note that if such h, exists, then h, is unique. Indeed, if there were two such choices
hY and b then (f, A1), = (Ayf,u)y = (f, B, for all f € Hy(M). Since Hy(M) is
dense in L? (M) we must have hy = hy. This shows that we may define the operator

Ak Ak 2
A7 : Dom(Ay) — L*(M)
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AZ u = hy,.
In order to show that A, is self-adjoint we need to prove that Dom(A;) = Dom(A,)

where Dom(A,) = Ha(M).

Since Ag is formally self-adjoint we have Dom(Ag) C Dom(A;). Indeed, if u €

Dom(A,), then for all f € Hy(M) we have (A,f,u), = (f, Ayu), and so trivially
we may set hy := Agu.

Let us now prove the converse inclusion. Let u € Dom(A;), say u = Z]- a;jp;. Then

there exists a unique h, = >, bjp; € L?(M) such that (A, f,u)y = (f,hy), for all
f € Hy(M). In particular, setting f = ¢; we get

Aja; = Ajlpj u)g = (Bgpjs t)g = (@js hu)g = b
which gives Aja; = bj. Therefore ), /\?a? =2 b? = ||hul3, < oo and so by the
characterization of Hy(M) we got that u € Hy(M) = Dom(A,) as we wanted. O

7.2 Characterization

Let (M, g) be a compact Riemannian manifold and write Ay < A9 < ... for the eigenval-
ues of the Laplacian repeated according to multiplicity (for any initial problem). Write
©1,p2,... for the corresponding L?-normalized eigenfunctions.

Since we require ¢; # 0 and Ay(1) = 0.1 we have the following easy remark:

A1 >0 Dirichlet boundary conditions,
A1 =0 Neumann boundary conditions.

Theorem 58. For k € N and Ex(g) := {©1,0s, -, Pr_1}",
Dy(¢, ) .
10115

The infimum is achieved if and only if ¢ is an eigenfunction of eigenvalue A\g.

Proof. Fix ¢ € Hi(M)N Eg(g) and assume it has expansion ¢ = Zj; ajpj. Fix £ € N,

Ak:inf{ gbeHl(M)ﬂEk(g)}.

¢ ¢
0<Dy 6= aje;, d— > ajp;
j=1 j=1
¢ ¢
= Dy(6,0) =2 _a;Dy(¢,0;) + Y ajaiDy(p;, ¢:)
= ij—1

‘ ‘
=Dy, 0) = 2> _a; (6, gy + Y ajai(vj, Agor)g

Jj=1 3,j=1

¢
=Dy, ) — Y _ Ajal.
j=1
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Therefore, we get Dy(¢, ¢) > Z§:1 )\ja§ for all £ € N and so

o(6,0) =D N =D Nl = MY af = Al (7.1)
Jj=1 Jj=k j=k
and so
— el

for all ¢ € Fx(g). If ¢ is an eigenfunction of eigenvalue \i, then according to Corollary
18
Dy(6.9) _ (6. Ag0),g
o1l 10113

and so the infimum is achieved.
On the other hand, if the infimum is achieved, from (7.1) follows that

[e.e] oo
E : 2 _ § 2
J=k J=k

and therefore
> (A = Ap)al =0.
i=k

If \j # A then a; = 0 and so ¢ must be a linear combination of eigenfunctions with
eigenvalue Ag. O

The previous theorem is a nice characterization of the eigenvalues, but in practise one
need to know the eigenfunctions to use. Since finding the eigenfunctions is a much
harder problem than determining the eigenvalues it is better to try to understand how
to characterize the eigenvalues without using any eigenfunctions. We proceed to give a
min-max characterization of the eigenvalues in terms of infimums and supremums over
vectors spaces that are independent of the eigenfunctions.

Theorem 59 (Max-Min Theorem). For k € N let Vi,_1 be the collection of all subspaces
V C C*®(M) of dimension k — 1. Then

)\k Z Sup Dg(¢72¢) .
Vevio: ee(Vinm (M)\{o} B2

Proof. Fix V € Vi1 and let ¥1,...,¢¥r_1 be a basis of orthonormal smooth func-
tions of V. We claim that there exists ¢ = Zle a;p; 7 0 so that <<]3, ¢j> = 0 for all
j=1,...,n—k. Indeed, the existence of such function is equivalent to finding aq, ..., ag
so that Ele a; (pi,pj) =0for j =1,...,k—1. This forms a system of k — 1 equations
with & unknowns, so it must have a solution.
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We then have

. Dy(6,¢) _ Dy(6:9)
pe(vLinm (M0} [912 H¢>H2

e Zaza] Vi, Vopilg
\|¢||g =

k

1
> " aiaj{ei Agps)g
H¢Hg” 1

1’“2

R

< Ak
O

Theorem 60 (Min-Max Theorem). For k € N let Vi, be the collection of all subspaces
V C C®°(M) of dimension k. Then

D
A < inf supM.
Vev gev |93

Proof. Note that Va := span{¢1,...,¢or} € Vi and for ¢ = Z? 1a;p; € Va one has

Dy(6,0) = Yk Nja? < Mellgll2 < A and so supgey, ||<§su’2¢) < Ag. On the other

hand, Dg(px, o) = Akll¢kl/2. and so SUDgey, Héng ) > \p.. Tt follows that

sup Dg(¢7 ¢)

= M.
geva  ll9l2

O]

Remark 61. The statement of the Max-min (resp. Min-max) Theorem holds writing

[}

an “=" sign istead of > (resp. <). The proof is not too hard but we skip it.

7.3 Domain monotonicity

Theorem 62 (Domain monotonicity for Dirichlet data). Let M be a compact Rie-
mannian manifold with piece-wise smooth (or empty) boundary, with a given eigenvalue
problem on OM. Let Qi,...,Qp C M be pairwise disjoint open sets whose boundaries
are piece-wise smooth and such that any intersection with OM 1is transversal. For each
i =1,...,¢ impose Dirichlet boundary conditions on €; except on OM N ); where the
initial data remains unchanged. Write pu1 < ps < ... for the eigenvalues of all the €;’s.
Then,

Ak < -
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Proof. Let 1; denote the eigenfunction of y; on the corresponding €2, with Dirichlet
boundary conditions on d€y,. Set 1; = 0 on M\§y,. Then 1; € Hi(M) for all i. Fix
k € N. We may make 1, ..., ¥, orthonormal.

We claim that there exists ¢ = Zle a;p; € Hy(M) N (spanf{e1,...,or_1})*. The ar-
gument is the same as in Theorem 59, it amounts to solve k — 1 equations having k
unknowns.

By Theorem 58

Mell@ll2 < Dy, 6) = Zaza] (i, 1),

i,j=1

and
g (Vi 5) = / Ag¢i i wg
M
= / Agwi i wg
2,

= Vi - Agihiwg +0

ij
= WKy / (I wj Wy
Qd}j
= H;0ij-
Therefore )‘ngbHZ < Zzg 1 alaJDg(whw]) = Zz 1 z/'LZ < /’Lk||¢|‘2 0

Theorem 63 (Domain monotonicity for Neumann data). Let M be a compact Rie-
mannian manifold with piece-wise smooth (or empty) boundary, with a given eigenvalue
problem on OM. Let Qq,...,Qp C M be pairwise disjoint open sets whose boundaries
are piece-wise smooth and such that any intersection with OM is transversal. Assume
further that

_ )
For each i = 1,...,¢ impose Neumann boundary conditions on ; except on M N §2;
where the initial data remains unchanged. Write v1 < v < ... for the eigenvalues of
all the €;’s. Then,

Vg < k-

Proof. Let 1; be the eigenfunction corresponding to v; on the appropriate 2y, and
set ¥y = 0 on M\Qy,. As before, we may assume the 1; are orthonormal and we
have ¢; € Hi(M). As we have shown before, there exists ¢ = Zle a;p; so that
¢ € Hi(M) N (span{i1,...,1k-1})". Note that in particular ¢ € H(Q;) for all j.
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Write Dg] H,(925) x Hi(€2;) — R for the Dirichlet form on €2;. Note that by Theorem
58

D (0002w [ 16Pw,

It then follows that

l
Dy 0) =3 D (6,0) mZ/ 1612wy = vill6]2
7j=1

On the other hand,

k
Zalaj (Wi t5) = > aihi < Aelgll2-
i=1

3,j=1

7.4 Simple lower bound for \;

The operator (Ay+1)™ : Hap (M) — L*(M) is elliptic for all m € N and so by Gérding’s
inequality there exists C' > 0 making

101l a < C™([(Ag + 1)™ | 2

Theorem 64. Let n =dim M. For any integer m > n/4 there exist constants Cy, > 0
and k., > 0 such that )

for all k > ky,.
Proof. We start noticing that if Agp; = Ajp; then (Ay +I)™p; = (A\j +1)"p;. Let
= P ker((Ag F I — (A + 1)m).
(Aj+1)m<A
For ¢ = Zj ajp; € Hy we have
1A + D)™ l72 = 1 Y\ + )™ apgllze = Y (7 + 1) lajeillfe < X6l
J J
and so

1(Ag +1)" 0l L2 < M@ 2.

By the Sobolev embedding, if 2m > n/2 then Hs,,(M) C C°(M). In particular, there
exists C7 > 0 for which

16lloc < C1ll@ |, for all ¢ € Hop(M).
Putting all together, if ¢ € Hy, then there is Cy > 0

[Plloe < Cillll s < Coll(Ag + 1)@z < C2A|[]| L2
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Fix x € M and ¢ < dim H). Then, for any real numbers aq, ..., as,

¢ 1/2
‘ =2 (Z laj @jlli2> = O\ (
j=1

Now pick a; = ¢;(z). We then get

¢ ¢ 12
a2
)

a; gpj(x)‘ < CoA H zfzaj ‘Pj)
=1 !

J

1 J

1/2

¢ ‘
> i@ < oA (D ¢i(@)?)
j=1 j=1
and so for all z € M
l
Zgoj(x)2 < C2N2
j=1
Integrating over M

¢ < C3a*vol, (M)

and therefore in particular dim H, < C2A\?voly(M) for any A. Picking A := (\x + 1)™
we get k= dim#H),, and so

VEk

e+ 1) > ————.
i+ 1) Oy y/volg(M)

7.5 First eigenvalue: Faber Krahn inequality

Given two regions with the same volume, the one with the largest boundary should be
the one that looses heat the fastest. Since a solution for the heat equation is dominates
by the term e~ *%y;, we should have that the first eigenvalue corresponding to the region
with larger boundary should be greater. The results in this section are presented for
subset of R”™ but can be rewritten with almost no modification for a compact Riemannian
manifolds (M, g).

Theorem 65 (Faber Krahn inequality). Let Q@ C R™ be a bounded domain and let
B C R" denote a ball satisfying vol(2) = vol(B). Then,

A1(2) > \(B)

Where \1(2) and \1(B) are the first eigenvalues for the Dirichlet eigenvalues on Q2 and
B respectively.

To prove this Theorem we will use in several ocassions the co-area formula:

/ Wd /mm/ ¥ ard
Qj: T S.
(6>t} t o1(s) IVl
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Proof. Let ¢ € V and set
Q:={zeR": ¢(z) >t}

We now define a symmetrization ¢, : B — [0,+00) of ¢. Let B; be a ball centered at
the origin satisfying vol(B;) = vol(€);). The symmetrization ¢, is defined as the radially
symmetric function such that

{x €R?: ¢.(x) >t} =By

By the co-area formula

max ¢ 1 max ¢« 1
——d7ds = vol(;) = vol(B;) = / / dr ds.
/t /¢—1(s) Vol () (B) t 671 (s) V4]

Differentiation with respect to t we get

1 1
——dr —/ ———dT for all ¢. 7.2
/qs—l(t) Vol o' (t) IV Dx (7-2)

/¢2d:c:/max¢/ —d)Q drds
Q 0 ¢-1(s) IV
/maX(z) 2/ 1
= s ——drds
0 ¢~ 1(s) |v¢’
/maX¢> 2/ 1
= S ———drds
0 671 (s) | V]

=Aﬁm

where the last equality follows from the fact that max ¢ = max ¢..

Then,

For ¢ € [0, max ¢| define the functions

G(t):/D VoPPdz  and G*(t):/B\V¢*]2dx.

By the co-area formula

max ¢
G(t) = / / V| dr ds
t ¢=1(s)

c'(t) = _/w(t) V6| dr.

and so

Analogously,
G =~ [ | Ivalar
()
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By Cauchy-Schwartz inequality

2
-1 2 _ T T L T
(vol(¢p™(1)))? = (A_l(t)ld ) < (/d)_l(t)lwﬁ!d ) </¢—1(t) Nz d )

On the other hand, since |V¢,| is constant on ¢, (),
? 1
vol(¢;1(t)))? = / ldr | = / Vo.|dr / —dr .
( ) 0 <z>:1(t)‘ | o (1) |Vl

The isoperimetric inequality says that

vol(¢~! (1)) > vol(¢; ™ (1)).

It follows from (7.2) that

<ﬂﬂ=—élwvww<—é;

*

V.| dr = G.(1).
(®

Integrate with respect to t (using that G(max¢) = 0 = G.(max¢)) and apply the
co-area formula to get

/ V6|2 dz = G(0) > G.(0) :/ Vo |2 da.
Q B

It follows that

_ Jo Vo dx - [ |Vo.|? da

Al(Q) - fQ (Z)Q de = fB (Z)E dr = )\1(B)

7.6 Continuity of eigenvalues

The notes in this section where written by Dmitri Gekhtman.

Theorem 66 (Continuity in the C°-topology of metrics). Let M be a compact manifold
and let g and g be two Riemannian metrics on M that are close in the sense that there
exists € > 0 small making

(1-e)g<g=<(l+e)g

Then,

Ae(g)
1—(n+1e+0(?) < ()

Proof. At the level of the volume measures we have that

<1+ (n+1)e+0(2).

(1-)3w; < wy < (1+¢)Fuy

and so (1—¢)2 o7 < [lolly < (1+€)2 [lll3.
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ij Op O
Note that for any ¢ € C*°(M) we have || Vg0 = [}, D i1 g”a—;% Wy
since (1—¢)g ! <g7 ! <(1+¢)g !, we get
(1= &) 2 IVa0llZ < IVeell; < (1+e) 24| Vgell3.
It then follows that

(L= IVaely _ IVeell _ (L+2)5 " IVl
1+e)2 lellZ = lel = a-g2 el

and therefore,

O

We aim to show that the kth eigenvalue of the Laplacian on Riemannian manifold
depends continuously on the metric. For this to make sense, we must first establish a
topology on the space of metrics M. Let M be a compact, connected, smooth manifold
of dimension and let T2(M) be the set of type (2,0) tensor fields on M. Fix a finite
cover {Uy}ser of M by open neighborhoods, each satisfying U, C V, for some open
coordinate neighborhood V. For any h € T2(M), let hi; denote the components of h

with respect to the coordinates on V. For every nonnegative integer k

define
[Pllko =D > 10%hi).
la|<k ij
We define
1l = S~ [l
o€l

Finally, we define a norm on 72(M) by

Rl = 27 IR fe(1 + [[Allx) !
k=0

and define d' : T2(M) x T?(M) — R to be the associated distance
d'(h1, ha) = |[h1 — ha|.
Next, we define a distance d’ on M by

d"(g1,92) = sup d(g1, g2),
xeM

where
dy(g1,92) = nf{8 > 0[e™(g2)2 < (g1)0 < €*(g2)2}-
If A, B are inner products A < B means that B — A is positive definite.

and o € I we

Now, we define d = d’ + d”. The distance d on M is complete and defines the C'*®

topology on M.

Theorem 67. Let \i(g) be the kth eigenvalue of the Laplacian associated to g. A is a
continuous function on M with respect to the C°° topology. More precisely, d(g,q’) <

implies
exp(—(n + 1)8)Mi(g") < Mi(g) < exp((n + 1)0)Ak(g).
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Proof. Suppose d(g,g') < . Then d’(g,g") < 0, which implies that
e ¢ <g<ey.
Let {U, (2%)} be a coordinate patch on M. Then
e~7(gi;) < (9i5) < € (g;),
where (g;;) is the positive definite symmetric matrix defined by the components of g.

If A, B are positive definite symmetric matrices satisfying A < B, then we have the
estimates |B| < |A| for the determinants and B~ < A~ for the inverses. Hence, we

have
n n
eXP(—ga) |9£j\ < /lgijl < GXP(25) ‘g§j|

e 7(g"7) < (gi5) < °(g").

Now, suppose f is a smooth function compactly supported in U. Then we have

n n
1918 = | 2y laslds < exp50) [ £/l = esp(Go)l 13-
U U

and

and similarly Hng > exp(—5 )Hf”;
If w is a one-form compact supported in U, we have

w2 = /Ug”wiwj |9ijldz < exp((5 +1)9) /Ug”wz‘wg‘ g3 da = exp((5 + 1)6)[lwllZ,

and similarly [|w||2 > exp(—(% + 1)5)Hw||3,.
Hence, we have the inequalities

exp(—(5 + DI)dflIZ < lldfll? < exp((5 + 1)) 1df 2

and n n
ep(~ 50713 < 1712 < exp(S o) fI2

for all smooth functions f compactly supported in a coordinate neighborhood. Using
a partition of unity, we find that the inequalities hold for all f in C°°(M). Combining
the inequalities, we obtain

2 2 2
1 UG sy 1412
gl

— 1)
P+ DO = g S

Recalling

d 2
A:(g) =inf  sup | fH2g’
vk revivgoy IF115

the last inequality yields

exp(—(n+1)8)Ae(g') < Ai(g) < exp((n + 1)d)Ar(g)-

This implies
Ae(9") = Aklg) < (exp((n +1)8) — 1)Ax(g),

which proves continuity of A. ]
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In the proof of the last statement, we established the inequality
Ak(9)

Ae(g')
Ae(9)

which shows that if g, ¢’ are close, e (0) is close to 1 uniformly in k. As a consequence,
we have the following

exp(—(n + 1)5) <

< exp((n +1)9),

Corollary 68. The multiplicity of the kth eigenvalue is an upper-semicontinuous func-
tion of the metric. That is, for any g € M, k € N, there is a § so that d(g,q’) <

implies #{j|A;(9') = Ae(9)} < #{7lA;i(9) = Ar(9)}-

7.7 Multiplicity of eigenvalues

If (M,g) is a compact boundary-less Riemannian manifold of dimension n > 3, then
Colin de Verdiere proved that every finite sequence 0 = A1 < Ay < A3 < -+ < Mg is
the sequence of the first k£ eigenvalues counted with multiplicity of the Laplacian. In
particular, there are no restrictions on the multiplicities of eigenvalues on manifolds of
dimension n > 3. In contrast, this picture is very different on surfaces. Indeed, the
following holds:

e on (5% g) one has m; < 2j+1
e on (P%(R), g) one has m; < 2j +3
e on (12, g) one has m; < 2j +4

where ¢ in the above examples denotes a general Riemannian metric. Observe that if
one chooses the standard metrics on these surfaces then one obtains the equalities on
the multiplicities.

7.8 High energy eigenvalue asymptotics

Let (M, g) be a compact boundary-less Riemannian manifold. Write
0= <XA<A< ..

for all the Laplace eigenvalues repeated according to their multiplicity. We begin this
section by introducing the Zeta function Z; : (0, +00) - R

(e}
Zy(t) =) et
j=1

Since the series is uniformly convergent on intervals of the form [ty, +00) for all ¢y > 0 we
know that Z, is continuous. We also have that it is decreasing in ¢, that lim, g+ Z,(t) =
+00, and limy_, { o Z4(t) = 0.

Proposition 69.

1

Zg(t) ~ (47Tt)n/2

(voly(M) 4+ O(t)) as t — 0T,
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Proof.

[e.e]

Zy(t) = Ze_/\jt

J=0

= [ vt wyta)

1 ko
= W jgotj /M uj(z,x) we(x) + O(tk“)

= i (ol (M) + O(1)

Let us now write
O=1r<wr<ry<...

for all the distinct eigenvalues. Then, setting m; for the multiplicity of v; we can rewrite
o
Zy(t) = ije vit,
j=1

Theorem 70. The function Z, determines all the eigenvalues and their multiplicities.

Proof. Note that for p > 0 with p # 2,

oo 0 if p < w9,
lim e (Z,(t) —1) = li i)t — i
Jlim e ( 4(1) ) tlglo mje oo i pu <
j=2 ma, if u = 1e.
It follows that o is the unique strictly positive real number p such that the limit
limy_s oo e“t(Zg(t) — 1) is a nmatural number. By induction, v is the unique strictly

positive real number p such that the limit

t—o00

k—1
my, = lim e“t<Zg(t) -1- ije_”ft>
j=2

is a natural number.

O]

Theorem 71 (Karamata). Suppose that p is a positive measure on [0,00) and that
a € (0,00). Then

/ e " du(z) ~ at™® t—0
0
implies R
a
d ~ 2\ .
/0 () Ta+D) T — 00
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Proof. Define the measures on RT by setting p;(A) := t*u(t~1A) for A € R*. Observe
that if x4 is the indicator function for any set A, then by definition

/ AW (N) = 1@ / XA(EN (V).

It follows that for any f € L2(R")

/ FN () = t° / FENdu(N),

and so in particular,

lim [ e du(\) = tlim to‘/e_”‘d,u()\) =a. (%)
—00

t—o00

Note that by definition of the Gamma function m i e ra " 1d\ = 1. We therefore
define the measure dv()\) := aA*~1d\ and get

: Y _ a -
tlgélo e Ndu(N) = Mot 1) /e dv ().

Consider the space B := span{gs : Rt — R* : g,(\) = e, s € (0,+00)}. By
performing a change of variables one checks

Tim [ A(A)dpu(A) = m

/ W\ dv())

for all h € B. By the locally compact spaces version of the Stone-Weirstrass Theorem
one has that B is dense in C§°(R") = {f € C*®°(R") : f(\) vanishes as A — oo}. Let
f € CX(R™). Since f(A\)e* € C°(RT), then there exists a sequence h; € C3°(R) with
lim; o0 hj = e f. Note that for each j we get

INa+1)

In order to interchange lim; ., and lim;_,o we use that according to () the measures
e dyuy are uniformly bounded. We proved

lim [ hj(\)e Mdu(\) =

t—o00

/ hi(A)e rdr(\).

. a
Jim [ 5O = 5 [ sva .
In particular this equality holds for f = x[o,;] and it is easy to check that acceding to
our definitions of the measures p; and v
e
Ia+1)

is equivalent to the conclusion we desired to prove. O

im [ xjo,1(A\)dpe(A) =

lim [ o).
Let w, be the volume of the unite ball in R",

27rn/2
Wy 1= ————

nl'(n/2)

Our aim is to prove the following Theorem:
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Theorem 72 (Weyl’s asymptotic formula). Let M be a compact Riemannian manifold
with eigenvalues 0 = \g < A1 < ..., each distinct eigenvalue repeated according to its
multiplicity.

Then for N(X) :=#{j : A\j < A}, we have

wn, n
N(\) ~ @ voly(M)NV2, A — 0.
In particular,
V2w 9
Aj ~ 32, j— o0
’ (anlg(M))2/n

Proof.
For the measure p =9 A;» Proposition 69 asserts that

/ e du(\) ~ %Volg(M)f"ﬂ.
0 (47)>=

)2
Using Karamata’s theorem on p and o = n/2 we obtain

B A VOlg(M) n/2 _
N(\) = /0 dp(A) ~ (47‘()"/2F(n/2 + 1))\ "= @T

7.9 Isospectral manifolds

In this section we prove that if (M, gas) and (N, gn) are compact Riemannian manifolds
which share the same eigenvalues then they must have the same dimension, same volume
and same total curvature.

Theorem 73. If (M, gy) and (N, gn) are isospectral compact Riemannian manifolds,
then
dim M = dim N, volg,, (M) = volg, (N) and / Ry, Wy, :/ Ry wgy -
M N

am

Proof. Let \g < A1 < ... be the eigenvalues of both Ay, and Ay, . Then

gMm
00

D et = W th / u™ (1, ) wy(x) + O(t**1)

§=0 M

and

Ze m Zt / ufN (2, ) we(z z) + O(tF+1h)

M

K)
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It follows immediately that dim M = dim N := n. Next, note that

(e )
— W ]Z;ti </M uf (2, ) wy(x) — /NugN (z,z) wg(x)> +O@+

yields
[t ) o) = [ i @,0) o
M N
gmMm

and since u (z,z) = uf" (z,z) = 1, we have voly,, (M) = volg, (N). Repeating the
same argument it follows that if (M, gas) and (N, gn) are isospectral compact Rieman-
nian manifolds, then for all j

| e wyo) = [ @0 o).

M N

In particular, since ui(z,z) = $Ry(z) we have that (M, gar) and (N, gn) have the same
total curvature. O

We next prove that in the case of compact surfaces isospectrality implies a strong result:

Corollary 74. If (M, gnr) and (N, gn) are isospectral compact Riemannian surfaces,
then M and N are diffeomorphic.

Proof. By Gauss-Bonnet Theorem

/ RQM Wonr = 871-(1 - ’VM)
M

where s is the genus of M. The same result holds for N. We then use that

/ Ry, wg = / Rgy wy
M N

which yields vy = yn. The result follows from the fact that two orientable surfaces
with the same genus are diffeomorphic. O

Theorem 75. Suppose (M, gar) and (N, gn) are isospectral compact Riemannian man-
ifolds of dimension n = 2,3,4,5. If (M, gn) has constant sectional curvature, then so
does (N, gn).

Remark 76. In dimension n = 6 the result also holds provided we ask the sectional
curvatures of (M, gpr) to be strictly positive.

Theorem 77. If (M, g) is isospectral to (52, gg2), then (M, g) is isometric to (S%, gg2).



CHAPTER 8

Eigenfunctions

Write (z,€) for the coordinates of a particle in phase space. That is, x denotes position
and £ is the momentum. Let H : T*M — R be the Hamiltonian

H(r,€) = ez + V(z).

As discussed in the Introduction, the classical Hamiltonian equations

Oz; _ oH
ot — ¢
%, _ _0H
ot ij7

describe the motion of a particle with kinetic energy 3|¢|? and potential energy V().
The idea of Schrédinger was to model the behavior of the electron by a wave-function
©; that solves the problem

h2
(= A+ V)e; = Ej(h)e;.

Here h is Planck’s constant, a very small number h ~ 6.6 x 10734 m?2kg/s. If we choose
a system free of potential energy, V = 0, then the limit A — 0 is equivalent to the high
frequency limit A — oco. When working with normalized eigenfunctions, |¢;|l2 = 1, one
has that for any A C M

/ i (2)|? wy(x) = P(particle of energy Ej(h)/h belongs to A ).
A
The time evolution of a particle in the initial state ug is given by
) 2
u(x,t) = 6_1%(_%A9+V)u(x).

Note that for all ¢

it _h? —iE
HEE A )| de = TR p(2) e = [ (o) 2de
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and so eigenstates are stationary states.

We start studying the behavior of solutions ¢y to the equation Ayzpy = Apy on balls
B(xg,r) for r small. They are not necesarilly solutions on the whole manifold. Some-
times local results on smalls balls can be extended to solutions on all of M by covering
arguments.

8.1 Local properties of Eigenfunctions

It can be shown that on small length scales comparable to wavelegth scale 1/ VX eigen-
functions behave like harmonic functions. Fix an atlas over M. Then, in local coordi-
nates at x¢g € M the Laplace equation is given by

\/W Zl Oz, (gij \/c@axm) (z) = Apa(z) @€ B, s5(0).
,J

We rescale this problem to the unit ball. That is, we set r = €/ v/ and given any function
won M we write u, for the rescaled function u,(x) = u(rz). Then, the Laplace equation
becomes

n
- Z a:rl ( V det gra;r](ﬁ/\ 7‘) \/ ‘;0)\ 7‘ HANS Bl(xo)'
i,j=1
Consider the operator
n ..
- Z 8% (g;"j \% det grarj) - 62
i,j=1
Then the Laplace equation becomes
Loy, =0 on Bi(0).

For € > 0 small enough, the operator L is close to be the Euclidean Laplacian and ¢) ,
is close to being a harmonic function. This property is extensively used in the works of
H. Donelly, C. Fefferman and N. Nadirashvilli.

Eigenfunctions ¢y in small length scales are an analogue to polynomials of degree v/\.
Actually, polynomials and eigenfunctions have many properties in common:

e Order of vanishing.

e Local growth.

e Local structure of nodal sets.

The frequency function of a given function u € C°°(M) measures the local growth rate
of u. Let u be any harmonic function on B;(0) C R™. Fora € B1(0) and 0 < r < 1—]al,
define the frequency of u at a in the ball B,.(a) by

Dy(a,r)

N — e\
u(a7) "Heola,r)’
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where

Dy(a,r) :/ |Vu|?dz, H,(a,r) :/ u’do.
By (a) OBr(a)

It can be shown that Ny, (a, ) is a monotone non-dedreasing function of r € (0, 1—|a|) for
any a € B1(0). Supose v is a harmonic homogeneous polynomial of degree k. Then we
may write u on polar coordinates u(r,w) = cpr¥éy(w) where ¢y, is a spherical harmonic
of degree k on S"~!. Then,

k cz r2k

Nu(0,7) = —Eo—
0.1 = "5

= k = degree(u).

Since by integration by parts one can show that d%Hu(a, r) = ”T_lHu(a, r) 4+ 2Dy(a,r),

we get ] (H( )) Noar)

—1
dr 8 rn—1 r

We therefore obtain that for all 0 < R < 3(1 — |al),

H“(a’2R) Hu(avR) 2R Hu(aaR) N(a,1—
(2R)"—1 ! exp(/R 2Nu(O,T)/7“dT) < T 4N (a,1-lal)

In particular,

Hy(a, \R) 2N, (0,1) Hy(a, R)
= A2Nu(0, 1<A<2
()\R)n—l A Rn—1 SAS (*)

Integrating with respect to R this gives

1

1
S wde < AQNMJ)/ w?dz 0<R<1/2, 1<A<2.
vol(Bxr(0)) /Bm(o) vol( BR(0)

Br(0))
Using this one can prove that the order of vanishing v (a) of u at a € By /4(0) is bounded
vy(a) < CNy(0,1) + ¢(n).

Using that @) »(z) = @) (rz) is almost harmonic the previous order of vanishing estimate
can be extended to manifolds. But in order to do that one has to extend the definition
of the frequency function. It turns out that on a compact manifold (M, g) the natural
extension of the frequency function of a harmonic map v € C*°(M) is

B Dy(a,r)
Ny(a,r) = Tm,
where
Dy(a,r) —/ p|Vul?dz, Hy(a,r) —/ puldo
By (a) OBr(a)
with ()
9ij (2)ziz;
ple) = =5

One then gets the followin result on the order of vanishing of ¢y:
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Theorem 78 (Order of vanishing). Let (M, g) be a compact manifold of dimension n.
Then there exists C' > 0 such that

Vg, (a) <OV forall a € M.

Using that ¢y ,(x) = @a(rz) is almost harmonic the previous doubling estimate can be
extended to the following result.

Theorem 79 (Doubling estimate). Let ¢y be a global eigenfunction for Ay on (M, g)
compact. Then there exists C' > 0 and rg > 0 such that for all 0 < r < rg

1 / 2 CVA 1 / 2
B ——— w < e —_— Wq.
00l Bor (@) Sy o P = ol B (@) Sy P

In addition, for 0 <1’ <r,

max |ox(x)] <

max xX)|.
max [o(x)]| < 0r(@)

xEBr/ (p)

7\ CVA
(r’)
8.1.1 Gradient estimates

Harmonic functions on R" satisfy many other nice properties. For instance, they satisfy
Bernstein type estimates. Let u be harmonic on R™. Then

¢

sup [Vu(@) < C s Julo)]
x€Br(a) T 2€Ba.(a)
and
sup |Vu(z)]* < 2-2/ lu(z)|?dz.
z€By(a) r By (a)

The translation of these results to the setting of eigenfunctions on compact manifolds
is the following.

Theorem 80 (Bernstein inequalities). Let (M, g) be a compact manifold. Then,

S

CA -
sup |V ()| < sup |pa(z)], 7 < CoATVE
z€Br(a) T z€Ba.(a)

and

/ Vioa (@) Py z) < <2 / o (2) Py ().
Br(a) By (a)

r2
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8.1.2 Positive mass on subsets of M

Suppose that (M, g) is compact and that ¢, is a global eigenfunction, Ajpy = Apy.
Then, if A C M,

/ (o2 (2) g () > c e OV,
A

As an illustration, the highest weight spherical harmonics Yf decay at a rate e—cVAdy(,7)
away from a stable elliptic orbit v, where A = ¢(¢ + 1).

A semi-classical lacuna is an open subset A C M for which there exist a sequence
{eox,, tof L?-normalized eigenfunctions and constants ¢, C' > 0 so that

[ leor, @Py(o) < eV,

Another descriptive term is exponential trough. Lacunae are also known as classically
forbidden regions. For instance, on the sphere the sequences {Y’} with m/¢{ — E
concentrates on an invariant annulus Kr C S2, which is known as the “classically
allowed region”. One can show that for this sequence |V (z)| < e=a@Er) where d,
denotes the Agmon distance.

It is unknown whether semi-classical lacunas can occur on (M, g) with classically chaotic
(i.e. highly ergodic) geodesic flows. In contrast, we have the following result:

Theorem 81 (Quantum ergodicity). If (M,g) is a compact manifold with ergodic
geodesic flow then there exists a density one subsequence of eigenfunctions {@;, }r such

that for any A C M
voly(A)

i [l () = G

By density one subsequence it is meant that inf,, w = 1. This result is due to
Schnirelman (1973) finished by Colin de Verdiere (1975).

Remark. On arithmetic surfaces the above result holds for the entire sequence of
eigenfunctions. This is known as Quantum Unique Ergodicity.

8.2 Global properties of eigenfunctions

8.2.1 L*>-norms

Weyl’s law says that

vl (M) |7

N(X) = #{eigenvalues < A\} ~ @)

and one can further prove what’s known as local Weyl’s law

S Jon, (@) = V%) yu gy gy
)\jg)\ J (277)” )
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with R(\, x) = O()\nT_l) uniformly in =z € M. In particular,
n—1
Y i@ =0oM7)
A=A
uniformly in z € M. In particular, the following result holds:

Theorem 82. Let (M, g) be a compact Riemannian manifold of dimension n. Then, if
Agor = Ay, 1
[eallzee = O(AT).

Let V) = ker(Agy — ) and set

Iy (z,y) := ox; (@)er; (V).
g A <A

We define the coherent state at x € M by

H)\(.f,y)

\/H)\(.%',l')’

The coherent states are extremes for the L°°-norms. Indeed,

D3 (y) = y € M.

loa(z)] = ‘/M Hx(w,y)w(y)wg(y)‘ < \//M L\ (2, y) [Pwg(y) < V/Ix(z, ) = |85 ()]

Remark. On the sphere, the zonal spherical harmonic YOZ of degree / is the coherent
state @5 where x is the north pole and A = £(¢ +1).

The L°°-norm estimate is very rarely sharp. Here we show that if the upper bound is
attained, then there must be a recurrent point on M. For x € M consider the set L,
of £ € S;M that are the initial velocities of geodesic loops that start at . That is,
L, :={¢ € SiM : exp,(T¢) = z for some T}. We write |£,| for its measure. For
example, on (S?, gg2) we have |L,| = 27 for o being the south or north pole.

n—1

Note that we know sup{||¢|jr=: @ € Vi, |l¢]| =1} =0\ 7).

Theorem 83. Suppose

. n—1
sup{|lllz~ : @ € Va, [l =1} is not o(A"7).

Then, there exists © € M for which |L;| > 0. In particular, if g is analytic, then all the
geodesics loops at x must return to x at the same time.

The proof of this result is based on the study of R(A,x). Indeed, if |£;| = 0, then

R\ ) = 0,(A"T).

It follows that there are topological restrictions for M to have a real analytic metric
such that some sequence of eigenfunctions has the maximal sup-norms. Among all pos-
sible surfaces, only the sphere possesses such a metric. In addition, a metric on S?



8.2 GLOBAL PROPERTIES OF EIGENFUNCTIONS 107

with ergodic geodesic flow can never exhibit the maximal growth rate achieved by zonal
harmonics on (5%, gg2).

When the geodesic flow is chaotic, the random wave conjecture predicts that eiegen-
functions should behave like Gaussian random functions. In particular, one should have
llealle = O(y/log A). This is very likely to be true in most chaotic systems but not for
all of them. Indeed, It has been shown that on some special arithmetic hyperbolic quo-
tients the O(yv/log A) doesn’t hold. The best result known to date if that on manifolds

with no conjugate points ||@y||fe = O(A%/log A).

8.2.2 LP-norms.

In general LP-norms are hard to compute. For general LP-norms one has the following
general result due to C. Sogge.

Theorem 84. Let (M, g) be compact Riemannian manifold and let ¢y be a normalized
etgenfunction of eigenvalue \. Then, for all 2 < p < oo

3(p)

lealle = O(A™27)

where 2t 1)
n(i-1) -1 if 2 <p<oo,
MMz{Q A

-1 i 2<p< Al

2(n+1)
n—1 7

ally invariant) spherical harmonics saturate the LP-bounds. For 2 < p < 2(:7:1) the
bounds are saturated by highest weight spherical harmonics, i.e. Gaussian beam along
a stable elliptic geodesic.

The upper bounds are saturated on the round sphere. For p > zonal (rotation-

The zonal has high L? norm due to its high peaks on balls of radius 1/v/X . The balls
are so small that they do not have high LP norms for small p. The Gaussian beams are
not as high but they are relatively high over an entire geodesic.

Sogge’s result holds for p > 2. For the L' we have the obvious bound [¢y|[;1 <
lleallrz < 1. It is interesting however to observe that we can use the LP bounds for
p > 2 to get a lower bound on |[px|11-

Theorem 85. Let (M, g) be compact Riemannian manifold and let oy be a normalized
eigenfunction of eigenvalue \. Then, there exists ¢ such that

_n—1
loall = e s
Proof. Fix2 <p< % Sogge’s LP bounds give that there exists C), > 0 for which
n—1,1 1
loallzr < CpA™T 277,

By Holder’s inequality,

1 1_q
loallze < lleallzlleallzs
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1 1 —2
for 6 = 27 (5 1) = 525 Tt follows that

—

1

é 5_1 L—l(l_l)
= lleallZs < leallalleallfs” < lleallzs (CoA™T 7))

The result follows from observing that ”T_l (% — %) (% — 1) = "T_l. O
Symmetry of LP-norms. Jakobson and Nadirashvilli studied the relation between the
LP norm of the negative and positive parts of eigenfunctions. Indeed, for x the indicator
function, set

OF =0 X{pa0p,  and @) 1= Ox - X{pr<0}-

Theorem 86. Let (M, g) be a compact smooth manifold. Then, for any p € Z*+ there
exists Cp, > 0 such that for any non constant eigenfunction ¢y of the Laplacian

+
1 el

Cp ~ llexller —

for all \.

8.3 Zeros of eigenfunctions

Let (M,g) be a compact Riemannian manifold. Given any function ¢ € C>*°(M) we
define its nodal set

Ny :={x e M: ¢(z) =0}

Each connected component of the complement of N, is called a nodal domain.

We continue to write Ay < Ao < ... for the eigenvalues of the Laplacian repeated ac-
cording to multiplicity (for any initial problem). Write @1, @2, ... for the corresponding
L?-normalized eigenfunctions.

Theorem 87 (Courant’s nodal domain Theorem). The number of nodal domains of ¢y,
1s strictly smaller than k + 1.

Proof. Suppose that ¢ has at least k + 1 nodal domains Dy, ..., Dgy1,... and define

T/J': Pk |D]~ OHD]',.
/ 0 else

There exists ¢ = Z;?:l a;jy; € Hi(M) orthogonal to ¢1, ..., pr_1 by the same argument
in Theorem 58. Then,
)\k: S D9(¢72¢) )
[l

Also,

.
Dyg(¢,0) = Y aiaj(Agihi, hs)g,

ij=1
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and
o)y = [ By vy = [ Bgvi- v,
M D;
:/ wi-Aggokwg—i-O
Dj
=05 | Pk Agprwy
i
_ 2
= Mebij [ Pl wg-
j
Therefore,
k
Dy(v6) =3 Me [ ateds, < Mol
j=1 D;
We proved
DQ(¢7 ¢) — Ak
16113

and so it follows that ¢ is an eigenfunction of eigenvalue A;. Since ¢ vanishes on an
open set Dy11 we conclude from the unique continuation principle that ¢ = 0, which is
a contradiction. ]

Important remarks.
e 1 always has constant sign.

e The multiplicity of A1 is 1: Otherwise, if ¢9 is an eigenfunction for A; we would
know that (o has constant sign. Since ¢; has constant sign as well we have a
contradiction from the fact that (1, ¢2), = 0.

® s has precisely two nodal domains and ¢ has at least two nodal domains for all
k > 2: Otherwise ¢ has constant sign but (1, ¢x), =0 .

Theorem 88. For any (M, g) there exists a constant C > 0 so that every ball of radius
bigger that C’/ﬁ contains a zero of any eigenfunction ).

Proof. Fix x € M and r > 0. Suppose that @) has no zeros in B,(z). Then, there must
exist a nodal domain D) of ¢, such that B,.(z) C D). Consider now the eigenvalue
problem on Dy

¢(z) =0 x € 0Dy,

It follows that ) is an eigenfunction for (). In addition, since ¢y doesn’t change sign
in D) we must have that it is the first eigenfunction for (x). Let us write A(D,) for
the corresponding eigenvalue. By Domain monotonicity, since B,(x) C Dy, we get

A= A(Dy) < Mi(B(z)).
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To finish the proof one needs to show that A (B, (z)) < C?/r? for some constant C > 0.

Consider the Euclidean metric g.(y) := g(x) for all y € By (x;g) where a € (0,1) is
chosen so that By, (z;g.) C Br(x;¢g). By Domain monotonicity we get

A(Br (23 9)) < A1(Bar(7;9))-

In addition, by comparing Rayleigh’s quotients we get that there exists C; > 0 making

M(Bar(z59)) < C1A1(Bar(; ge))-

On the other hand, by explicit computations using the Bessel functions on euclidean
balls it is possible to get

It follows that A1 (B, (z;g)) < 9152, O
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One way of measure the local asymmetry of the nodal sets is the following result due
to Mangoubi.

Proposition 89. Let (M, g) be a compact manifold of dimension n. Then there exists
C > 0 with
volg ({¢x > 0} N By, (x))
volg(Bay(x))

for all x € M and r > 0 such that {px =0} N By(x) # 0.

> o\ T

Using this result Mangoubi showed the following theorem on the inner radius of the
nodal domains. By inner radius of D, inrad(D) we mean the largest r such that there
exists a ball of radius r that can be inscribed in D.

Theorem 90. Let (M,g) be a compact manifold of dimension n. Then there exists
C1,Cy > 0 such that for Dy nodal domain of @y one has

<inrad(D)) < 53

VA

G
a(n)

where a(n) = $(n — 1) + 5.
Note that on surfaces this means that the inner radius of D) is comparable to 1/ V.

- — ‘ IC I\
-
\\.

N

Figure: Nodal set of a bitorus
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Hausdorff measure. We continue to write n = dimM. Let A C M be any subset and
set

HY = inf Z(diam(Uj))d : AcCU;Uj, diamU; <6 »,
j=1

and

HI(A) = lim HI(A).

Since HZ(A) is monotone decreasing with § we have that H%(A) is well defended. How-
ever, it can be infinite. It can be shown that for A C M borel set one has H"(A) is
proportional to voly(A). Also, if v C M is a curve, one has that H(v) is propositional
to the length of ~. Similarly, %"(A) is the number of points in A.

Uhlembeck proved that 0 is a regular value of the eigenfunctions for a generic set of
metrics. In particular, generically, the nodal set {¢) = 0} is a smooth hypersurface.
In addition, it was proved by Baer that for xy € M there exists local coordinates

(x1,...,oy) at o = (0,...,0) such that an eigenfunction ¢ can be rewritten as
k—1 '
o(z) = v(x) (:B’f + ijl uj(xa, ... ,:rn))
j=0
where ¢ vanishes to order k at xg, u; vanishes to order k—j at (x2,...,2,) = (0,...,0),

and v(z) # 0 close to p. It follows that nodal sets are rectifiable and therefore
H (N, ) < oo

In 1978 J.Briining proved that on surfaces there exists C' > 0 for which H"~1(N,, ) > Az
Later, in 1982, S. T. Yau conjectured that on any compact n-dimensional manifold there
exist constants C, ¢ > 0 for which

AT <HVU(N,,) < CAz.

Yau’s conjecture was proved for n-dimensional manifolds with real analytic metrics by
H. Donelly and C. Fefferman in 1988. For manifolds with smooth metrics the conjecture
remains open.

The best known upper bound is due to R. Hardt and L. Simon (1989):

Theorem 91. Let (M,g) be a compact n-dimensional Riemannian manifold. Then,
there exists C > 0 for which

an—l(N@k) < )\C\A
The best known lower bound to date is due to T. Colding and P. Minicozzi (2010):

Theorem 92. Let (M,g) be a compact n-dimensional Riemannian manifold. Then,
there exists ¢ > 0 for which
3—n
AT <HTHNG,).

The same result was obtained in a very neat proof by H. Hezari and C.Sogge. This
proof is heavily based on a result by C.Sogge and S. Zelditch which we prove next.
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Proposition 93. Let (M,g) be a compact n-dimensional Riemannian manifold. For
any f € C*(M)

/ (Agf — M) lpal g = —2 / f1¥403] 7.
M Ny

Choosing f = (1 + A\p3 + |Vgg0,\|§)% and using the Sobolev bounds ||y ||z, = O(A\*/?)
H. Hezari and C.Sogge proved as a corollary of Proposition 93 that there exists ¢ > 0
making

eV lloallZ < HPHNG,). (8.1)
Inequality (8.1) cannot be improved on general manifolds since it is saturated by zonal
harmonics for which one can check that 7—[”71(/\/}04) ~ V.

Combining (8.1) with the L!- lower bound A< loallzr that we proved in Theorem
85 we get the proof of Theorem 92.We proceed to prove Proposition 93.

Proof of Proposition 93. Given A write DL (), ... ,Df*o‘)()\) for all the positive nodal

domains of ¢y, and analogously write D ()),..., Df_()‘)()\) for the negative ones. We

then have
N_()\)

N+(A) '
M= | DiNU | D2AUN,,.
j=1 j=1

Suppose 0 is a regular value of ¢). Then, all the nodal domains have smooth boundary.
In particular,

/. (Agf—Af)\w\wg=/. (D — M) pr ey
DI\ DY (M)

(A +

:/. f(Ag_A)SOAWg‘i'/ , faz/SDAUg_/ a0 f oy
Dy (V) oD% (\) oD% (\)

=—/_ 1IVorl 5.
oD% (\)

In the last equality we used that 0,05 = —|Vg4p,| and that Di()\) is a positive nodal
domain and so v and V4o, point in opposite directions. Similarly,

/ (Dgf — M) lioalwg = —/ FIVer| o,
Dk (\) oDk (\)

Adding these identities over j and k and using that N,, = UjODi()\) = URODE (X)
we get the desired result. If 0 is not a regular value, a version of Green’s identities for
domains with rough boundaries yields the same formula.

8.4 Random wave conjecture

In 1977, M. Berry proposed that random linear combinations of planar waves of a fixed
high frequency A in dimension n

N

1

Wi(z) := \/—NZai cos(ki-x+e), xe€R" (8.2)
=1
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serve as a model for high frequency wavefunctions in any quatum system in which
the underlying classical dynamics is chaotic. In equation (8.2) the coefficients a; are
independent standard Gaussian random variables, k; are uniformly distributed on the
sphere of radius A in R”, and ¢; are independent and uniformly distributed in (0, 27].
R. Aurich, A. Becker, R. Schubert, and M. Taglieber show that

Wl

P Vitogx =
almost surely.
On compact manifolds one cannot reproduce this construction. Actually, we know that
eigenvalues are generically simple so it is pointless to even think about considering ran-
dom linear combinations of eigenfunctions with a fixed eigenvalue. S. Zelditch then
proposed to consider random linear combinations of eigenfunctions with eigenvalues in
a window (A, A + 1]. These combinations are known as Gaussian random waves:

A Gaussian random wave of frequency A on (M, g) is a random function ¢ € H, defined
by
éri= > ajej
A EAAF]
where a; ~ N(0,k;?) are independent and identically distributed.

Remark 94. The normalizing constant ky is chosen so that E(||¢, |2) = 1. Also, the
law of ¢, is independent of the choice of a particular orthonormal basis.

Aside from L°°-norms, much work has been done on the distribution of the nodal sets
for random waves. For instance, S. Zelditch shows that the n — 1 dimensional Hausdorff
measureof the nodal set satisfies Yau’s conjecture in average

VA <E(H"H(N,)) < CVA

for some constants ¢, C' > 0 as long as (M, g) is either aperiodic or Zoll.

The random wave model predicts that the behavior of deterministic sequences of L2-
normalized eigenfunctions ¢y, as Aj + oo should coincide with the behavior of the
random plane waves W). It has been shown by N. Burq and G. Lebeau that

63,1l = O (V/Iog ;)

and

192, lp = O(1).



